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“Space is big. You just won’t believe how vastly, hugely, mind-bogglingly big it is. I
mean, you may think it’s a long way down the road to the chemist’s, but that’s just
peanuts to space.”

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

i



Declaration

I declare that no part of this thesis has been accepted, or is currently being submitted,

for any degree or diploma or certificate or any other qualification at this University

or elsewhere.

This thesis is the result of my own work unless otherwise stated.

The following Chapters have been based on publications:

• Chapter 4 – Savoury et al. (2011)

• Chapter 5 – Savoury et al. (2011)

• Chapter 6 – Savoury et al. (2012)

• Chapter 7 – Savoury & Littlefair (2013)

ii



Summary

Cataclysmic variables (CVs) are a class of closely interacting binary system that un-

dergo mass transfer from a Roche lobe filling secondary star to a white dwarf primary

star, usually via a gas stream and an accretion disc. A bright spot is formed where

the gas stream meets the edge of the accretion disc. The light curves of CVs can be

complex, with the accretion disc, white dwarf and bright spot all being eclipsed in

rapid succession. When observed with time resolutions of the order of a few seconds,

this eclipse structure allows the system parameters to be determined to a high degree

of precision, with relatively few assumptions. In this thesis I present new, high-speed

photometry of 20 eclipsing CVs. For 6 objects, I am able to determine the system

parameters by fitting a parameterised model to the observed eclipse light curve (the

photometric method). In addition, I perform an updated analysis of 11 CVs that were

previously analysed by my group, bringing the total sample size of eclipsing CVs with

precise mass determinations in this thesis to 17. I find the secondary stars in CVs

are oversized in comparison to standard models. I show that this can be explained

by either enhancing the mass-transfer rate, or by modifying the stellar physics of the

secondary stars. Distinguishing between these two possibilities is not possible given

the available data.

I perform an independent check of the photometric method by deriving system pa-

rameters for one object using well known spectroscopic methods. The parameters
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derived are found to be consistent with the photometric method, thus supporting its

accuracy and validity.

Finally, I look at the infrared spectra of a short period CV. I am able to make a

direct detection of the secondary star and place some constraints on the spectral

type of the secondary star.
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Chapter 1

Introduction

1.1 Cataclysmic Variables

1.1.1 What is a CV?

Cataclysmic variables (CVs) are a type of semi-detached binary system with short (�

12 hour) orbital periods that undergo mass transfer. They usually consist of a white

dwarf primary star (of mass M1), that accretes matter from a red dwarf secondary

star (of mass M2).

In non-magnetic systems, mass transfer takes place via a gas stream and an ac-

cretion disc, through the inner Lagrangian point (see §1.1.2). Where the gas stream

meets the edge of the accretion disc is often a shock-heated area of emission, referred

to as the bright-spot. In some systems, this is the dominant source of luminosity.

At the inner edge of the accretion disc is the boundary layer, where material in the

accretion disc is decelerated to match the surface velocity of the white dwarf. A

schematic view of a non-magnetic CV is shown in Figure 1.1.

1
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Figure 1.1: A schematic diagram of a non-magnetic CV. The white dwarf, secondary
star, accretion disc, bright spot, inner Lagrangian point (L1) and gas stream are
labelled.

1.1.2 Roche Lobe Geometry

The relationship between the CV component masses (M1, M2), their separation (a)

and the orbital period (Porb) can be described by Kepler’s third law,

a3 =
G(M1 +M2)P

2
orb

4π2
, (1.1)

where G is the gravitational constant. For orbital periods of a few hours, and masses

close to that of the Sun, Equation 1.1 implies orbital separations of the order of one

solar radii. The short orbital periods and close proximity of the two components

result in a strongly distorted secondary star that is tidally locked in synchronous

rotation. This is due to a combination of tidal forces from the gravitation field of

the primary star and centrifugal forces from the rotation. The synchronisation (and

circularisation of the orbit) occurs on very short timescales in comparison to the

lifetime of a CV (Zahn, 1977; Warner, 1995). The white dwarf remains unaffected

by the tidal effects, due to its small radius.

The shape of the secondary star can be determined by the Roche approximation
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Figure 1.2: The Cartesian coordinate system used to define the Roche geometry.
The frame is co-rotating with the binary with the primary star at the origin. The
x-axis is the line between the centres of the two stars, and X increases towards the
secondary star. The y-axis is perpendicular to the x-axis, in the plane of the binary
(in the direction of the motion of the secondary) and the z-axis is perpendicular to
the binary plane. Xc denotes the centre of mass of the binary, and R1 is the length
of the vector from the white dwarf, to a random point in the system, P .

(Kopal, 1959), which assumes that the gravitational field of each component is ap-

proximated as being due to a point mass, and thus neglects the influence of distortion

on the gravitation field of the secondary star. To define the Roche geometry, a set of

right-handed Cartesian coordinates as shown in Figure 1.2 is used. The total poten-

tial (Φ) at any point P is given by the sum of the gravitational potentials from each

component plus the effective potential from the centrifugal force. From Figure 1.2,

this is given by

Φ =
−GM1√

(x2 + y2 + z2)

−GM2√
(x− a)2 + y2 + z2

− 2π2

P 2
orb

[(
x− M2

M1 +M2

)2

+ y2

]
. (1.2)

Lines of equal potential are known as Roche equipotentials, and it can be shown that

the scale of the equipotentials depends only upon the separation of the two stars. It

can also be shown that the shape of the equipotentials depends only upon the ratio
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Figure 1.3: The Roche potentials. A: q = 0.5, in 2-dimensions, in the X-Y plane at
Z=0. B: q = 0.5, in 1-dimension, cut in the x-axis along the line of centres. C: A
pseudo 3-dimensional view of the Roche potential.

of masses between the two stars, q, that is defined as

q =
M2

M1

=
K1

K2

, (1.3)

where K1 and K2 are the radial velocities of the primary and secondary stars, re-

spectively.

Figure 1.3 shows the shape of the Roche potentials in 1, 2 and 3-dimensions.

In Figure 1.3A, the potential defined by the figure of eight contour is the critical

potential, which defines the Roche lobes of each star. The two Roche lobes meet at

the inner Lagrangian point (L1). For small stellar radii, a star lies well within its

Roche lobe and is not distorted. In most CVs, this is the case for the white dwarf,

but not the secondary star. In CVs, the secondary star fills its Roche lobe either by
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expansion of the star through nuclear evolution, or by shrinking of the Roche lobe

itself (see §1.4.3). If the Roche lobe is full, then matter ‘escapes’ the gravitational pull

of the secondary star and flows between the two stars via the L1 point (Paczyński,

1971).

In this thesis, the volume-equivalent radius of the Roche lobe, RL, is used as a

measure of the size of the secondary star. This is defined as the radius of the sphere

that would have the same volume as the Roche-lobe, and is given by Eggleton’s

formula (Eggleton, 1983), which is accurate to ∼1 per cent:

RL

a
=

0.49q2/3

0.6q2/3 + ln(1 + q1/3)
, 0 < q <∞. (1.4)

1.2 Types of Cataclysmic Variable

CVs derive their name from their outbursts - dramatic increases in the brightness of

a system that can last from days to years with a wide range of amplitudes. Not all

outbursts are caused by the same the physical process. These outbursts, although

spectacular, are non-destructive. In some systems outbursts are frequently observed;

in others they are rarely if at all seen. It is the range of outburst amplitudes, durations

and recurrence times that lead to the definition of many classes and subclasses of

CVs (Warner, 1995).

1.2.1 Classical and Recurrent Novae

Classical Novae (CN) were the first CVs to be observed. The increase in brightness

in these systems may be anywhere between 6 and 19 magnitudes, and it exhibits a

strong correlation with the nova decay time. The brightest eruptions tend to fade

the fastest (days to weeks, fast novae), whilst the dimmer eruptions fade the slowest

(months to years, slow novae). By definition, classical novae have been observed to
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undergo one such outburst.

The mechanism responsible for CN is a thermonuclear runaway explosion (TNR)

within a thin shell of hydrogen rich material accreted onto the surface of the white

dwarf (see e.g. Shara, 1989; Warner, 1995, and references therein). As material

is accreted into the shell, the pressure of the degenerate material rises to such a

point where nuclear reactions begin. This increases the temperature of the material,

which in turn increases the rate of reaction, leading to a runaway reaction within the

hydrogen shell. This continues until the radiation pressure becomes great enough

to blow the shell of material off the surface. The ejected material is often observed

as a nova shell surrounding the CV. Spectroscopically this shell is observed as high-

velocity, blue-shifted absorption lines accompanying each emission line. All CVs are

expected to undergo many nova eruptions at some stage of their evolution with an

expected recurrence time of approximately 104 − 106 years (Shara et al., 1986; della

Valle & Duerbeck, 1993). The discovery of a shell surrounding the dwarf nova Z Cam

strongly supports this hypothesis (Shara et al., 2007).

Recurrent Novae (RN) are systems that have been observed to erupt more than

once. The amplitudes, duration, decay time and recurrence time of RN often overlap

those of Dwarf Novae (see §1.2.2), however the presence of the nova shell in their

spectrum strongly suggests an outburst mechanism similar to that of CN. RN can be

thought of as a special case of CN; the mass of the envelope required to trigger a TNR

has been shown to fall rapidly with increasing white dwarf mass (e.g. Warner, 1995),

and thus rapid accretion onto a high mass white dwarf would produce more frequent

outbursts. Given that there is less material within the envelope compared to a CN,

it follows that the amplitude, duration and decay time would also be smaller than

those of CN. RN are therefore thought to be CVs in which accretion is occurring at a

high rate onto a white dwarf that is close to the Chandrasekhar mass. Observational

support of high mass white dwarfs in RN is provided by Thoroughgood et al. (2001),
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who constrain the white dwarf in U Sco to be M1 > 1.31M�.

1.2.2 Dwarf Novae

Dwarf novae (DN) typically undergo outbursts with amplitudes between 2 and 6

magnitudes. Recurrence times are usually weeks to years, and are correlated with

the duration of outburst (days to weeks). When a DN is not in outburst, or on the

rise to outburst, it is said to be in quiescence. When it is in outburst, or on the rise

to outburst, it is often described as being in a high state. Almost all of the objects

studied in this thesis are DN in quiescence. The outburst mechanism for DN is very

different from that of CN and RN. The favoured model is the disc instability model

(Osaki, 1974). In the disc instability model (DIM), outbursts are caused by a sudden

increase in mass transfer rate through the accretion disc. The DIM is discussed in

detail in §1.3.
There are three distinct subtypes of DN based on the morphology of the long-term

light curve. These include;

1. SU UMa stars. These systems exhibit occasional super-outbursts that are

brighter (by ∼0.7 magnitudes), and of longer duration (∼5 times) than or-

dinary outbursts. In addition, they also exhibit superhumps. Superhumps are

periodic humps that appear in the light curves of SU UMa stars as the star

nears the maximum of its super-outburst. Superhumps have periods slightly

longer than the orbital cycle, and there exists a unique relationship between the

mass ratio, orbital period and superhump period (e.g. Patterson et al., 2005,

§1.8.1).

2. Z Cam stars. These systems exhibit standstills around 0.7 magnitudes below

the maximum brightness. During these standstills, regular outbursts cease for

weeks to years. Z Cam stars are thought to have mass transfer rates very
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close to the rate required to maintain a stable disc. Slight changes in the mass

transfer rate are enough to drop the mass transfer rate below the rate required

to maintain a stable disc and thus the disc becomes unstable and shows ‘normal’

DN outbursts.

3. U Gem stars. These are DN that do not exhibit standstills or super-outbursts,

showing only ‘normal’ outburst behaviour.

1.2.3 Nova-Like Variables

The nova-like variables (NLs) generally include all CVs that follow the standard CV

model outlined in §1.1.1, but have not shown any eruptive behaviour. This may be

because the observational baseline of the system is too short, or the mass transfer

rates are sufficiently high enough to suppress the disc instability mechanism (see

§1.3). The majority of NL are thought to be because of the latter, and harbour

steady state accretion discs. In this scenario the rate of mass transfer from the

secondary star equals the accretion rate within the disc.

The NLs are divided into three main subgroups. These are the UX UMa, RW

Tri and AM CVn stars. UX UMa stars show strong, broad absorption lines in their

spectra, whilst the RW Tri stars show emission line spectra, occasionally with deep

absorption cores. It is thought the differences in these two classes is due to inclination

effects (with the RW Tri stars appearing more edge on). The UM UMa and RW Tri

sub-classes can be broken down further into the VY Scl and SW Sex classes, that

can belong to either the UM UMa or RW Tri classes. VY Scl systems exhibit periods

of decreased brightness that last from weeks to years. SW Sex systems are eclipsing

systems that show spectral peculiarities, such as single-peaked Hydrogen-Balmer and

Helium emission (HeI) (see e.g. Dhillon et al., 2012, for recent developments). AM

CVn stars are helium rich objects with ultra-short orbital periods (e.g. Nelemans,
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2005). The secondary stars in these systems are thought to be a degenerate secondary

star (e.g. another white dwarf). For a review of NLs, see e.g. Warner (1995), Dhillon

(1996) and Hellier (2001).

1.2.4 Magnetic CVs

The magnetic CVs include polars (AM Her) and intermediate-polars (DQ Her). In

magnetic systems, the magnetic field of the white dwarf is sufficiently strong enough

to disrupt the formation of the accretion disc and boundary layer. This disruption

may be partial (intermediate polars), and result in a truncated inner disc, or total

(polars), where no disc forms and material flows directly onto the surface of the

white dwarf via the magnetic field lines. In polars, the magnetic field strength of the

white dwarf is so strong (106 − 108 Gauss) that the white dwarf is forced to rotate

synchronously with its orbit. In intermediate polars the magnetic field strength is

weaker, and the white dwarf rotates asynchronously with its orbit.

1.3 Disc Instability Model

As its name may suggest, outbursts in DN are the result of instability in the accretion

disc. The source of this instability is thermal instability in the
∑−Teff plane, shown

in Figure 1.4. The relationship between the surface density (
∑

) and temperature

(Teff ) describes an ‘S’-curve of thermal equilibrium where viscous heating is balanced

by radiation from the surface of the disc. A system located off this line will heat or

cool until thermal equilibrium is established. The relationship traces an S-shape

due to variations in the opacity of disc material around the photo-ionisation point

of hydrogen (see e.g. Lasota, 2001, for a review). The middle branch of the S-

curve is thermally unstable and it is this instability that gives rise to DN outbursts.

This can be understood by considering that the flux generated by viscosity must be



1.3. Disc Instability Model 10

Figure 1.4: A schematic representation of the
∑−Teff relation. Dashed lines show

the heating and cooling phases of the disc instability model. Arrows show the direc-
tion the disc moves though a DN outburst cycle.

proportional to the surface density of the disc. However, from the Stefan-Boltzmann

law the emergent flux is proportional to T 4. Therefore, for a given temperature, a

system to the right of the curve in Figure 1.4 will produce more flux than can be

radiated away and it will undergo rapid heating to return to thermal equilibrium.

Likewise, a system to the left of the curve will undergo cooling. If the system is on

the middle branch, a negative perturbation in temperature will move the system to

the left of the S-curve and the system will experience rapid cooling moving to the

lower branch. Likewise, a positive perturbation in temperature will produce rapid

heating and move to the upper branch.

The overall outburst cycle of a DN can therefore be understood by considering an

annulus of material in the disc. When the system is in quiescence, the rate of mass

transfer to the annulus is greater than the rate of flow though the annulus (the local

accretion rate). This results in a build up of material inside the annulus, increasing

the surface density (
∑

) and temperature (Teff ). The annulus thus moves along the
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lower branch of Figure 1.4. When the annulus reaches the end of the lower branch,

further increases in the surface density push the annulus out of thermal equilibrium

and causes rapid, unstable heating until the annulus reaches the upper branch. At this

point, a sudden rise in viscosity greatly increases the local accretion rate, leading to

an outburst. The increase in viscosity can be understood by considering turbulence

within the disc. Shakura & Sunyaev (1973) introduced the α-prescription, which

characterises the viscosity of the disc in terms of turbulence, which in turn is described

by a dimensionless parameter called the alpha-viscosity, α. This allows the viscosity

of the disc, v, to be quantified by

v = CsHα, (1.5)

where Cs is the sound speed in the disc and H is the scale height of the disc. The

sound speed is given by

Cs =

√
3kT

Mp

, (1.6)

where k is the Boltzmann constant, T is the temperature of the material and Mp is

the mass of a typical particle. Therefore, for constant α, it follows that the viscosity

of the disc will increase if the temperature of the disc increases. This increase in the

viscosity of the disc therefore increases the local accretion rate, causing a reduction

in the surface density and a cooling of the disc. The annulus now moves along the

upper path of Figure 1.4. Eventually, the density and temperature drop to such a

point where the annulus is on the left side of the S-curve, causing rapid cooling until

thermal equilibrium is reached again on the lower path of Figure 1.4. The annulus is

now back in quiescence and the cycle can begin again. The flow of material through

one annulus naturally affects the flow of material to an adjacent annulus and so

this cycle of heating and cooling in an unstable annulus triggers the same effect in

neighbouring annuli, leading to most of the disc being in outburst or quiescence. This
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mechanism also explains why DN outbursts are not seen in all systems; their mass

transfer rates are high enough to maintain each annulus in the disc on the upper

branch of Figure 1.4, or alternatively, the rates are too low and the system cannot

leave the lower branch of Figure 1.4

Accretion disc models (e.g. Schreiber et al., 2003) suggest that for a DN in qui-

escence α ∼ 0.01, whilst in outburst α ∼ 0.1. The source of the viscosity is however

still uncertain. Molecular viscosity is almost negligible (α ∼ 10−11) and thus cannot

account for the inferred α values. The most promising mechanism for accretion disc

viscosity is the magnetic Balbus-Hawley (B−H) instability (Balbus & Hawley, 1991;

Hawley & Balbus, 1998). Under the B-H instability, ionised material present within

the disc couples to the magnetic field present in the disc. The exchange of angu-

lar momentum between coupled disc material results in material rotating at larger

radii moving further out, material at smaller radii moving inwards and the magnetic

field lines becoming stretched and amplified. As the magnetic field lines become

more amplified, the process runs away, leading to magnetic turbulence throughout

the disc. The large change in α between the high and low states of the accretion

disc is evidence for the B-H instability because α increases as the disc becomes more

ionised. At the same time, the B-H instability becomes more efficient as more ionised

material is present. For a review of accretion discs, see e.g. Lasota (2001).

1.4 Origins and Evolution

1.4.1 Progenitors of CVs

White dwarfs (WDs) are the final stage in the evolution of low to intermediate mass

stars, formed when a star sheds its hydrogen-rich envelope. Stellar theory tells us

that the WD formed generally consists of either helium (He-WDs), carbon and oxygen
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(CO-WDs), or oxygen and neon (ONe-WDs). The type of WD formed depends upon

the initial mass of the star.

He-WDs (0.15M� � Mwd � 0.50M�) may form from low mass stars (� 2.0M�) if

the wind loss rate on the red giant branch is high enough (D’Cruz et al., 1996; Kalirai

et al., 2007), or more likely via binary interactions (Marsh et al., 1995). CO-WDs

(0.50M� � Mwd � 1.10M�) form from intermediate mass stars (1.0M� � M �

6 − 8M� (e.g. Weidemann, 2000; Kalirai et al., 2008), whilst ONe-WDs (1.10M� �

Mwd � 1.38M�) form from higher-mass intermediate stars (8M� � M � 9− 10M�)

(e.g. Prialnik, 2000; Salaris & Cassisi, 2005). The majority of CVs are found to

contain WDs with masses around ∼ 0.75− 0.77M� (Smith & Dhillon, 1998; Knigge,

2006). This suggests a composition of carbon and oxygen, which in turn suggests the

primary star was of intermediate mass. However, due to mass transfer, it is possible

that the primary star was a low mass star that has subsequently accreted material.

WDs are formed following a giant phase of stellar evolution. During this phase,

the stellar radii are typically around 10R� (Hekker et al., 2011), but may extend as

far as ∼ 200R� (e.g. Prialnik, 2000; Schröder & Connon Smith, 2008). However, as

discussed in §1.1.2, CVs have orbital separations of ∼ 1R�. This suggests that the

system was initially a wide binary, and that significant orbital shrinkage must have

taken place. The current explanation for this shrinkage is that the binary passes

through a common envelope phase (Paczynski, 1976; Taam & Sandquist, 2000).

1.4.2 Common Envelope Phase

As a consequence of its higher mass, the primary star evolves to the giant phase of

its evolution before the secondary star. During this giant phase, the primary star fills

its Roche lobe and mass transfer commences from the primary star to the secondary

star. As the secondary star is further from the centre of mass of the system, the

orbital radius must decrease in order to conserve angular momentum. This causes
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the Roche lobes to decrease in size, resulting in more matter being transfered. In

this situation, mass transfer occurs on a timescale faster than the thermal timescale

of the secondary star, and so the secondary star is unable to adjust its structure

to accommodate this additional mass (see §1.4.5). The net result is unstable mass

transfer that forms a common envelope surrounding both stars. The formation of this

envelope is thought to be rapid and may only take a few orbital cycles (Paczynski,

1976).

The two stars continue to orbit within the common envelope, however they experi-

ence a drag force. This drag transfers angular momentum and energy from the binary

to the envelope. This results in the binary separation shrinking dramatically and the

luminosity of the envelope increasing rapidly (e.g. Meyer & Meyer-Hofmeister, 1979).

If the energy released into the envelope is sufficient to exceed the binding energy of

the envelope, then the envelope will be ejected as a planetary nebulae, leaving a de-

tached binary system, consisting of a white dwarf primary and red dwarf secondary.

If the energy released is insufficient, then the two stars are expected to merge and

form a giant star. In either scenario, the common envelope phase is thought to be

short, perhaps less than a few years (e.g. Passy et al., 2012; Ricker & Taam, 2012).

1.4.3 Pre-CV Evolution

The detached system that remains after the ejection of the common envelope, by

definition, does not undergo mass transfer. In order to become a mass-transferring

system once again, the secondary star must fill its Roche lobe. The mechanisms by

which this can occur were briefly mentioned in §1.1.2; expansion of the secondary

star through nuclear evolution, or by shrinking of the lobe.

The secondary stars in CVs are usually late-type, main-sequence like stars (e.g.

Smith & Dhillon, 1998), that have a range of masses between ∼ 0.05− 1.2M�. The

lifetimes of these stars are long (τms � 109 years) and so few will have been able
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to expand to large enough radii to fill their Roche Lobe, given the current age of

the universe. Therefore, a shrinking Roche lobe must be responsible for bringing the

majority of systems into contact. This is possible through angular momentum loss

(AML) from the binary: such AML shrinks the binary orbit and thus the size of the

Roche lobe.

1.4.4 Direct Formation from a White Dwarf-Brown Dwarf

Binary

Population synthesis models (Politano, 2004; Politano & Weiler, 2007) have shown

that it is possible to form detached systems with secondary star masses in the sub-

stellar regime, provided the progenitor binary can survive the common envelope

phase. Whether or not the system ejects the common envelope before a merger takes

place, is dependent on the efficiency parameter, αce, of the envelope. Depending on

the value of αce adopted, up to 15 per cent of the CV population could have formed

in this way (Politano, 2004). Observations of the short period white dwarf-brown

dwarf binary WD0137-349 (Maxted et al., 2006) have shown that progenitor systems

do exist and can survive the common envelope phase. However, there is only one

candidate CV that could have formed in this way: SDSS J1507+5230 (Littlefair et al.,

2007), and even then, a far more plausible explanation is that this system is actually

a member of the halo (Patterson et al., 2008; Uthas et al., 2011). It is likely that the

lack of evidence for systems formed this way is a consequence of the so called ‘brown

dwarf desert’ (e.g. Duquennoy & Mayor, 1991; Grether & Lineweaver, 2006), which

is an observed lack of close (� 5 AU) brown dwarf companions to solar-type stars.

Observations by Grether & Lineweaver (2006) have shown that brown dwarf-stellar

binaries are ∼10 times rarer than stellar-stellar binaries with orbital separations of

� 3 AU. This therefore drastically reduces the number of systems that are able to,
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or will be able to, enter a common envelope phase at some stage of their evolution.

1.4.5 Response to Mass Loss

The total angular momentum of the binary, J , can be written as

J = M1a1
2πa1
Porb

+M2a2
2πa2
Porb

= M1M2

(
Ga

M

) 1
2

, (1.7)

where M is the total mass of the binary (M = M1+M2) and a1 and a2 are the semi-

major axis of each component (a1+a2 = a). This can be logarithmically differentiated

to give

J̇

J
=

Ṁ1

M1

+
Ṁ2

M2

+
1

2

ȧ

a
− 1

2

Ṁ

M
. (1.8)

Assuming that mass loss is conservative, that is Ṁ1 = ˙−M2 and Ṁ = 0, then

ȧ

a
= 2

J̇

J
− 2(1− q)

Ṁ2

M2

. (1.9)

Therefore, if the total angular momentum of the system is conserved (J̇ = 0), mass

transfer from the secondary star to the primary star results in a increasing (provided

M2 < M1). A similar expression for the response of the Roche lobe to mass loss can

be derived using the relationship provided by Smith & Dhillon (1998) for the volume

equivalent radius of the Roche lobe1,

RL = 0.47a

(
M2

M

)1/3

, (1.10)

which may be logarithmically differentiated to give

ṘL

RL

=
ȧ

a
+

1

3

Ṁ2

M2

− 1

3

Ṁ

M
. (1.11)

1It is also possible to use Equation 1.4 or similar, however the mathematical manipulation is
considerably more difficult and does not significantly increase the accuracy of the result.
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By re-arranging Equation 1.11 for ȧ/a, and continuing the assumption that Ṁ = 0,

substituting into Equation 1.9 yields

ṘL

RL

= 2
J̇

J
− Ṁ2

M2

(
5

3
− 2q

)
. (1.12)

From Equation 1.12, it can be seen that the response of the Roche lobe to mass loss

is dependant on q. For the fully conservative case, J̇ = 0, and the Roche lobe will

expand in response to mass loss whenever q < 5/6.

The stability of mass transfer depends on the relative change of the secondary star

radius to its Roche lobe. For stable mass transfer, the secondary star must be able

to adjust its radius quickly enough to remain within its Roche lobe; mass transfer

is unstable if the radius of the secondary star expands relative to the radius of the

Roche lobe. The criteria for stable mass transfer can be expressed as

ṘL

RL

≥ Ṙ2

R2

. (1.13)

For the fully conservative case (J̇ = 0), combining Equations 1.12 and 1.13 with a

mass-radius relationship in form of

R2 ∝M ξ, (1.14)

gives rise to the following criteria for stable mass transfer

q ≤ ξ

2
+

5

6
. (1.15)

The secondary star responds to mass loss on two timescales. The first is the dy-

namical timescale, Tdyn, which is the time taken to return to hydrostatic equilibrium,
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and is given by

Tdyn = [Gp̄(R)]−1/2 (1.16)

(e.g. Warner, 1995), where p̄ is the mean density within a radius R. The second

timescale is the thermal timescale of the secondary star (sometimes referred to as the

Kelvin-Helmholtz timescale), which is the time taken for the secondary star to settle

into a new thermal equilibrium configuration. This is given by

TKH ∼ GM2
2

R2L2

, (1.17)

where L2 is the luminosity of the secondary star.

The initial response of the secondary star to mass loss is adiabatic and the sec-

ondary star will expand with mass loss. If the secondary star expands relative to

the Roche lobe, mass transfer is said to be dynamically unstable and mass transfer

will proceed on the dynamical timescale. To determine the condition for stable mass

transfer to occur, the adiabatic response of the secondary is required. For low mass

stars (M2 � 0.43), this corresponds to ξ = −1/3 (Paczyński, 1965; Rappaport et al.,

1982; Hjellming & Webbink, 1987; Politano, 1996). Using Equation 1.15, it can be

seen that for dynamically stable mass transfer, q ≤ 2/3. A system with q > 2/3

will therefore transfer mass on a dynamical timescale and rapidly form a common

envelope. This system would by definition not be observed as a CV.

Whether the secondary star returns to thermal equilibrium depends how TKH

compares to the mass-loss timescale of the secondary star, TML, where

TML ∼ M2

Ṁ2

. (1.18)

If the mass-loss timescale is greater than the thermal timescale (TML > TKH), the

secondary star can respond to mass loss and maintain its thermal equilibrium. Under
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this scenario, the secondary star will follow a mass-radius relationship similar to that

of a main sequence star,

R2

R�
= (0.91± 0.09)

M2

M�

(0.75±0.04)
(1.19)

(e.g. Smith & Dhillon, 1998), and therefore ξ = 0.75. Using Equation 1.15, it can be

seen that for thermally stable mass transfer, q � 1.21. Systems not obeying this will

be thermally unstable and transfer mass on a thermal timescale. These systems are

thought to be one source of super-soft x-rays (SSSs, e.g. Kahabka & van den Heuvel,

1997; Schenker, 2001).

Mass transfer in CVs is both dynamically and thermally stable. Systems that

are not stable will appear as other objects (e.g. SSSs). Most CVs also have q <

5/6 (Patterson et al., 2005), which from Equation 1.12, was shown to result in an

expanding Roche lobe with mass loss. Therefore, in order for mass transfer to be

sustained, angular momentum must be continuously lost from the binary orbit to

keep the Roche lobe in contact with the surface of the secondary star. This is often

described as a two stage process, where mass is first transferred from the secondary

star to the primary star, which causes the orbital separation to increase, the Roche

lobe to expand and the radius of the secondary star to decrease. The secondary star is

now no longer in contact with the Roche lobe. In the next stage, the binary loses some

angular momentum from its orbit, which decreases the orbital period and shrinks the

Roche lobe back onto the surface of the secondary star. Mass transfer is then able to

recommence. In practice, this is a continuous process and thus cataclysmic variables

evolve to shorter orbital periods and the secondary stars to lower masses via AML

from the binary orbit. There are thought to be two main mechanisms for AML in

CVs; gravitational radiation and magnetic braking.
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1.5 Angular Momentum Loss

1.5.1 Magnetic Braking of the Secondary Star

Magnetic braking (Verbunt & Zwaan, 1981; Rappaport et al., 1983) is a result of

two components - an ionised stellar wind and a stellar magnetic field present in the

secondary star. Under these conditions, the energetic, ionised particles present in

the stellar wind of the secondary star are forced to co-rotate with the star due to

coupling with the magnetic field lines of the secondary star. This co-rotation extracts

angular momentum from the secondary star, and because the secondary star is locked

in synchronous rotation, angular momentum is extracted from the binary as a whole.

This causes the orbital separation to shrink.

Magnetic braking is still poorly understood in comparison to gravitational radi-

ation and thus quantifying the AML and induced mass transfer for this mechanism

is difficult (see e.g. Appendix A of Knigge et al., 2011, for a review). Whichever

prescription of AML due to magnetic braking is adopted, it must be strong enough

to drive mass-transfer rates in high accretion rate systems, which are observed to be

∼ 10−8 − 10−9M� yr−1 (Townsley & Gänsicke, 2009).

1.5.2 Gravitational Radiation

General relativity states that matter causes space to curve. As a consequence of this,

two stars orbiting in a close binary will cause a repeated disturbance in space cur-

vature that results in waves propagating outwards from the source. These waves are

known as gravitational radiation. The waves requires energy, which is consequently

extracted from the binary orbit, causing the orbit to decay. The rate of angular

momentum loss through gravitational radiation is given by

J̇

J
=
−32G3

5c5
M1M2(M1 +M2)

a4
(1.20)
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(e.g. Kraft et al., 1962; Paczyński, 1967; Webbink, 1976; Paczynski & Sienkiewicz,

1981; Rappaport et al., 1982). Warner (1995) show that for a main sequence sec-

ondary star, this leads to typical mass transfer rates of

Ṁ2 = 3.8× 10−11
M

2/3
1 P

− 1
6

orb (h)

(1− 15q
19
)(1 + q)

1
3

M�yr−1. (1.21)

For an orbital period of 2 hours, M1 = 0.75M� and M2 = 0.15M�. Equation 1.21

suggests mass transfer rates of Ṁ2 ∼ 3.1×10−11M� yr−1. AML through gravitational

radiation therefore drives mass-loss at a rate of ∼2 orders of magnitude less than that

from magnetic braking.

1.6 The Secondary Stars in CVs

Combining Equations 1.1 and 1.10 yields a relationship between the orbital period,

the mass of the secondary star, and radius of the secondary star,

P 2
orb(s

2) = 5.7× 1012
(
R3

2(m
3)

M2(kg)

)
. (1.22)

Given that the mean density of the secondary star (ρ̄2) can be expressed as

ρ̄2 =
3M2

4πR3
2

, (1.23)

and that the secondary star fills its Roche lobe, combining Equations 1.22 and 1.23

gives the period density relationship,

ρ̄2 (kg m−3) = 1.361× 1012 P−2orb(s). (1.24)
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For orbital periods between 80 minutes and 11 hours, the mean density of the sec-

ondary star is 59000 kg m−3 > ρ̄2 > 870 kg m−3, which corresponds to the mean

densities found in ∼F7V-M8V main sequence stars (Binney & Merrifield, 1998). Thus

the majority of secondary stars in CVs should be similar to M, K, G, or late F main

sequence stars.

The secondary stars in CVs can differ from main sequence stars due to the effects

of mass loss, which can drive the secondary out of thermal equilibrium. As noted in

§1.4.5, whether a system is thermal equilibrium depends how its thermal timescale

compares to its mass loss timescale. If TML > TKH , the secondary star can respond

to mass loss and maintain thermal equilibrium. If the situation is reversed (TML ≤
TKH), the secondary star cannot respond to mass loss quickly enough to maintain

thermal equilibrium, thus becoming oversized for a given mass.

1.7 The Distribution of Orbital Periods

The orbital period, Porb, is by far the most commonly known parameter of CVs.

Orbital periods are currently known for ∼950 systems (Ritter & Kolb, 2003, Ritter

2012+). Because CVs evolve from longer periods to shorter periods (see §1.4.5),
the distribution of orbital periods, as shown in Figure 1.5, offers strong clues to the

detailed evolution of CVs. Considering Figure 1.5, there are three striking charac-

teristics:

1. the number systems with orbital periods above ∼ 6 hours decreases towards

longer orbital periods, with few systems above ∼ 11 hours (the long period

cut-off),

2. there are a lack of systems with periods between ∼ 2.2-3.2 hours (the period

gap),
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Figure 1.5: A histogram of the orbital period distribution, from Southworth et al.
(2012). The systems marked in black are the systems discovered via the Sloan Digital
Sky Survey (SDSS), whilst the systems in white are those catalogued by Ritter &
Kolb (2003).

3. there is a sharp cut off of systems with periods below ∼80 minutes (the period

minimum).

Any theory of CV evolution must be able to account for these observations.

1.7.1 The Long Period Cut-Off

The lack of long period systems can be explained as a consequence of mass transfer

stability. As the orbital period increases, so does the mass of the secondary star. It

was shown in §1.4.5 that for thermally stable mass transfer, q � 1.21; given that the

maximum possible mass of the primary star is 1.4 M� (the Chandrasekhar limit),

this limits the mass of the secondary star to M2 � 1.7M�. Note that this assumed

J̇ = 0, which is not strictly true for CVs. If J̇ < 0, then from Equations 1.12 and

1.13, it can be shown that this upper limit of 1.21 decreases further.

Combining Equation 1.22 with a mass-radius relationship (e.g. Equation 1.19),

a secondary star mass of M2 � 1.7M� suggests a maximum orbital period of ∼ 10
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hours. Objects with orbital periods longer than ∼10 hours are thought to possess

evolved secondary stars. Evolved stars are larger than a main-sequence star of the

same mass and are therefore able to fill their Roche lobes at a lower mass. Because

there are few white dwarfs with masses close to the Chandrasekhar limit, the number

of systems with orbital periods greater than 6 hours naturally begins to dwindle.

1.7.2 The Period Gap

The standard explanation for the observed period gap is the disrupted magnetic brak-

ing (DMB) scenario (Spruit & Ritter, 1983; Rappaport et al., 1983). In the DMB

model CVs above the period gap experience AML through gravitational radiation

(GR) and magnetic braking (MB), causing the orbital period and mass of the sec-

ondary star to decrease.

For CVs with periods around 5−6 hours, mass transfer rates are typically 108 −
109M� yr−1. The secondary star masses are around ∼ 0.6M� with approximate

radii of ∼ 0.6R� (e.g. Smith & Dhillon, 1998). Assuming the luminosity follows

a similar relationship to that of a main sequence star (L ∝ M3.5), it can be seen

from Equations 1.17 and 1.18 that TML > TKH , and therefore the secondary star

can respond quickly to mass loss and maintain a near-main sequence mass-radius

relationship. However, as a system evolves to shorter periods and lower masses, TKH

increases faster than TML, and thus the secondary star is gradually driven out of

thermal equilibrium (e.g. Patterson, 1984) becoming too large for its mass. As the

orbital period of the secondary star approaches ∼ 3 hours, the efficiency of magnetic

braking is assumed to drop dramatically, possibly ceasing completely. This decrease

in efficiency is thought to be caused by the mass of the secondary star crossing the

convective boundary (Robinson et al., 1981), resulting in a dramatic loss of efficiency

or cessation in its magnetic field (MacGregor & Charbonneau, 1997; Charbonneau

& MacGregor, 1997). In single, isolated stars, this happens around M2 ∼ 0.35M�
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(Chabrier & Baraffe, 1997), but in CVs it corresponds to secondary star masses

around 0.20 − 0.30M� (e.g. Smith & Dhillon, 1998; Patterson et al., 2005; Knigge,

2006). This sudden drop in mass transfer rate increases TML, such that it exceeds

TKH . This means the secondary star is able to relax back into thermal equilibrium

and detach from its Roche lobe, thus terminating mass transfer. The loss of angular

momentum from the binary orbit continues under the influence of GR until the Roche

lobe comes into contact with the surface of the secondary star again at a period of

∼2 hours, and mass transfer is able to commence, albeit at a lower rate. As a result,

stars at the lower and upper edge of the period gap should have the same mass.

Despite the lack of plausible alternatives, this model has been challenged on the

interpretation of rotation rates in open clusters. Andronov et al. (2003) argue that

the observed spin down of rapid rotators implies AML rates that are too low to

drive CVs out of thermal equilibrium, and that there is no evidence for a change

in spin-down rates around 0.25M�. By contrast, Barnes (2003) argues that the

open cluster data may be interpreted as two different magnetic field configurations

for stars with a radiative/convective boundary, and that whilst radiative/convective

stars can show either strong or weak MB, fully convective stars can only show weak

braking. As a result, a transition would still be observed from strong to weak MB

across the convective boundary. Likewise, observations by Reiners & Basri (2008)

hint at a drop off in the efficiency of magnetic braking for stars below the convective

boundary. Patterson et al. (2005) has shown that there is a discontinuity in secondary

star masses between the upper and lower edges of the period gap, which adds further

support to the DMB hypothesis.

Under the standard model of CV evolution, the small number of CVs that are

present in the period gap are explained as either magnetic systems that do not show

a period gap (e.g. Warner, 1995; Gänsicke et al., 2009), CVs that possess an evolved

secondary star (e.g. Littlefair et al., 2006a), or are recently born systems that have
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just exited the common envelope phase and commenced mass transfer (Davis et al.,

2008).

1.7.3 The Period Minimum

The minimum period can be explained by considering Equation 1.22. The evolution

to shorter orbital periods as M2 decreases depends upon the response of the radius of

the secondary star to mass-loss. For long period systems where the secondary stars

are approximately main sequence, mass loss naturally drives the system to shorter

periods. However, if the mass-radius relationship deviates significantly from that of a

main sequence star, the evolution of the orbital period will also deviate. This can also

be understood by considering Equation 1.22. If R3
2/M2 increases, so does the orbital

period. Therefore by considering a mass-radius relationship in the form of R2 ∝Mx
2 ,

it can be seen that whenever x < 1/3, the orbital period will increase. Systems that

have evolved past the period minimum are known as post-period-bouncers, or ‘period-

bouncers’. This is thought to occur when the secondary star has lost enough mass to

become a brown-dwarf like, partially degenerate object. Under this regime, hydrogen

burning ceases and the mass-radius relationship begins to deviate significantly from

that of a main sequence star. For example, a 0.05M� brown dwarf is very similar in

radius to Jupiter, but yet the mass is approximately 50 times greater.

The exact mass and orbital period at which the period minimum occurs depends

on the thermal timescale of the secondary star (Equation 1.17) and the mass-loss

timescale of the secondary star (Equation 1.18). As the system evolves towards

shorter orbital periods, the secondary star evolves towards degenerate masses. At

the same time, both timescales increase, however TKH does so faster. When TML

becomes shorter than TKH , the secondary star is unable to respond rapidly enough

to the mass loss and so is driven out of thermal equilibrium. Once out of thermal

equilibrium, L2 is reduced and so TKH increases. Further mass loss thus drives the
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star further from thermal equilibrium and so the star becomes progressively more

oversized for its mass. Therefore the mass-radius index and the actual value of Pmin

is thus highly dependant on the point when the secondary star is driven out of thermal

equilibrium, which is in turn highly sensitive to Ṁ2, and therefore the AML rate from

the binary orbit. The larger the AML rate, the shorter TML, and the sooner the star

is driven out of thermal equilibrium, leading to higher Pmin values.

In Figure 1.5, there are a large number of systems with periods immediately

above the minimum period. This is known as the period-spike. The period spike

arises because the time spent at a given orbital period is inversely proportional to

the rate of change of orbital period ( ˙Porb), which is related to the AML rate and

from Equation 1.22, the rate of change of radius of the secondary star. At the period

minimum, ˙Porb = 0, and so systems accumulate.

Standard evolutionary models predict that the minimum period should occur

around Pmin ≈ 65 minutes (Kolb & Baraffe, 1999; Howell et al., 2001), and that

up to ∼ 70 per cent of the current CV population should have evolved past the

period minimum (Kolb, 1993). This is in stark contrast to observations. The period

spike has only recently been identified, and indicates that the period minimum is

Pmin = 82.4 ± 0.7 minutes (Gänsicke et al., 2009). In addition, it is only recently

that any post-period-bounce systems have been identified (Littlefair et al., 2006b,

2008). A longer than expected period minimum suggests that the secondary stars

are larger than expected, which is supported by observations (e.g. Littlefair et al.,

2008). This may be due to missing stellar physics, such as magnetic activity in

the form of star spots (Chabrier et al., 2007), or an AML rate which is greater than

expected. Given that AML through GR is well quantified, this suggests an additional

form of AML may be present for CVs below the period (e.g. Willems et al., 2005).

One way to determine why the secondary stars appear oversized is to compare

the shape of the observed secondary star mass-period relationship (M2 − Porb), and



1.8. The Importance of Secondary Star Properties 28

by implication, mass-radius (M2−R2) relationship, to the models of Kolb & Baraffe

(1999), calculated with enhanced AML or modified stellar physics. Both of these

models, in principle, make different predictions for the shape of the mass-radius

relationship and position of the period minimum. If enhanced angular momentum

loss is responsible for oversized CV secondaries, the systems immediately below the

period gap would not be expected be far from thermal equilibrium. In contrast,

magnetic activity in the form of star spots would inhibit the convective processes in

all the CV secondary stars below the period gap (assuming that spot properties are

similar at all masses).

1.8 The Importance of Secondary Star Properties

The physical properties of the secondary stars in CVs are vital to understanding

the evolution of CVs. In §1.4.5, it was shown that the secondary stars in CVs

evolve towards lower masses and that CVs themselves (generally) evolve towards

shorter orbital periods. Thus, the secondary star’s mass serves as an indicator of the

evolutionary status of a system. For example, systems with low masses can generally

be considered older. However, the secondary star’s mass and radius (and by analogy,

Porb), also tell us about the system’s long-term mass-transfer rate, because the radius

of a star is a measure of its state of thermal equilibrium. The long-term mass-transfer

rate is responsible for the secular evolution of CVs, which is driven by AML from

the binary orbit. Thus, an understanding of AML rates is crucial to understanding

CV evolution.

AML rates are typically inferred by estimating the mass-transfer rate, Ṁ2. How-

ever, it is thought that Ṁ2 may vary significantly on timescales of ∼ 104 − 109 years

(Knigge et al., 2011). Patterson (1984) show that Ṁ2 can be estimated using the

luminosity of the accretion disc, however this technique is sensitive to a short ob-
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servational baseline (∼ 10− 100 years) and distance estimations, which are difficult

to obtain. Alternatively, Townsley & Gänsicke (2009) use the effective temperature

of the white dwarf to infer Ṁ2. These are also difficult to obtain and average over

∼ 103−105 years. Both of these methods are likely to provide a measure of the short

term mass-transfer rate and therefore cannot be used to reliably trace the secular

mass-transfer rate. The most reliable method for determining the long-term Ṁ2 is

to use the radius of the secondary star. Stehle et al. (1996) and Knigge et al. (2011)

show that the adjustment time of secondary star (Tadj) is given by

Tadj ∼ 0.05TKH , (1.25)

which is longer the timescales discussed above and comparable to timescales on which

mass transfer varies. Thus the mass-radius relationship for the secondary stars in

CVs is crucial in understanding the evolutionary processes of CVs. To deduce the

accurate mass-radius relationship, accurate and precise measurements of the masses

and radii are required for a large sample of CVs, covering a wide range of orbital

periods. Unfortunately, accurate and precise mass determinations are difficult to

obtain. This is especially so for short period systems, whose secondary stars are

often too faint to be visible in the spectrum (Friend et al., 1988; Littlefair, 2002;

Littlefair et al., 2003), and have mass-transfer rates too low for clear bright spot

ingress and egress features to be visible in their light curves (e.g. Chapter 4).

1.8.1 Superhumps

Although direct measurements of secondary star masses are difficult, there is an

indirect method of measuring secondary star masses using a phenomena present in

the light curves of many dwarf novae. As discussed in §1.2, SU UMa stars exhibit

superhumps. These superhumps are caused by the precession of an elliptical disc
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(Vogt, 1982; Osaki, 1985; Smith et al., 2007). The precession period, Ppc is longer

than the orbital period, resulting in a ‘beat’, or superhump period, Psh, between the

orbital and processional periods, which is given by

1

Psh

=
1

Porb

− 1

Ppc

, (1.26)

and so the fractional period excess (ε) of the superhump period can be given by

ε =
Psh − Porb

Ppc

. (1.27)

The elliptical disc forms through tidal interactions of the outer disc with the sec-

ondary star. These tidal forces result in material being pulled towards the secondary

star, causing a slight bulge, which lies slightly ahead of the secondary star in or-

bital phase. However, the Keplerian orbit of the material at the edge of the disc is

much faster than the orbital motion of the secondary star, and so provided q ≤ 0.35

(e.g. Hellier, 2001; Patterson et al., 2005), it is possible the for the disc material to

achieve a 3:1 resonance with the secondary star. This resonance enhances the radial

component of the disc material, elongating the orbital paths of the outer disc mate-

rial. Because the ellipticity of the disc is formed through tidal interactions with the

secondary star, the precession period, and therefore the superhump excess, depends

upon the mass of the secondary star, and thus the mass ratio, q (Patterson, 1998).

By measuring the superhump excess for CVs of known q, an empirical relationship

between ε − q can be deduced. This is known as the superhump excess-mass ratio

relationship. The secondary star mass of a superhumping CV can therefore be esti-

mated by measuring ε, calculating q using the empirical relationship, and assuming

a white dwarf mass.
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1.8.2 Empirical Donor Sequences

In recent years several authors (Patterson et al., 2005; Pearson, 2006; Knigge, 2006)

have derived ε−q relationships based on available mass estimates. These relationships

have been used to derive secondary star masses and other physical properties for large

numbers of CVs, which in turn have enabled the construction of a semi-empirical

donor sequence against which CVs can be compared and other properties inferred

(Knigge, 2006; Knigge et al., 2011). Knigge et al. (2011) also constructed a ‘self

consistent’ CV evolutionary track, that implies the angular momentum rate loss

below the period gap is around 2.5 times greater than the standard model of CV

evolution and 1.5 times less for system above the period gap. These evolutionary

tracks are important to our understanding of CVs, however they require accurate

mass and radii determinations for calibration purposes.

1.9 This Thesis

In this thesis I present accurate mass determinations for 17 eclipsing CVs made

using high-speed, three colour photometry, with the aim of using the masses and

other system parameters, to test theories regarding the evolution of CVs. A detailed

journal of observations, and the steps undertaken to reduce and calibrate the data

used in this thesis are given in Chapter 2. In Chapter 3, I describe the analysis

techniques used to derive the results of this thesis. In Chapter 4, I look at the light

curve morphology of 20 eclipsing CVs, and identify systems that are suitable for light

curve modelling and systems of interest for long term monitoring. In Chapter 5, I

present the results of light curve modelling for 17 eclipsing CVs, and in Chapter 6,

I test the validity of the light curve modelling technique by determining the mass

of one eclipsing CVs using time-resolved spectroscopy. In Chapter 7, I investigate

time-resolved spectra of a period-bouncing CV, and attempt to make the first direct
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spectroscopic detection of a brown-dwarf like secondary star.



Chapter 2

Observations and Data Reduction

In this chapter I will outline the observations which form the basis of this thesis.

Three forms of data are presented in this thesis; high-speed, multi-wavelength pho-

tometry; medium resolution, multi-wavelength spectroscopy; and low resolution J-

band spectroscopy. First I discuss the observations, and then describe the steps

undertaken to reduce and calibrate the data. The reduction of the data and the

following text are my own work unless stated otherwise.

2.1 Observations

2.1.1 ULTRACAM Photometry

The photometry data presented in this thesis were obtained during six observing

runs using the ultracam (Dhillon et al., 2007) and ultraspec (Dhillon et al.,

2008) instruments on the following telescopes;

1. The 8.2-m Very Large Telescope (VLT), operated by the European Southern

Observatory (ESO), at the Paranal observatory, Chile.

2. The 3.5-m New Technology Telescope (NTT) operated by ESO, at the La Silla

33
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observatory, Chile.

3. The 4.2-m William Herschel Telescope (WHT) operated by the Isaac Newton

Group of Telescopes (ING), on the island of La Palma, Spain.

ultracam is an ultra-fast, triple-beam CCD camera that is capable of imaging

in three different wave-bands simultaneously at speeds of up to 500 Hz. ultraspec

is the spectroscopic equivalent of ultracam, although it is also equipped with an

imager. For the data presented in this thesis, ultraspec was used in imaging mode,

making it near-identical to ultracam, albeit with only single wave-band coverage.

Consequently, the data reduction processes undertaken are the same as those for

ultracam, which are described in detail in this Chapter. Both instruments use the

Sloan Digital Sky Survey (SDSS) u′g′r′i′z′ filter system (Fukugita et al., 1996; Smith

et al., 2002). For further information, see Feline (2005), Dhillon et al. (2007) and

Dhillon et al. (2008).

The initial target list consisted of CVs that were identified as eclipsing DN during

the Sloan Digital Sky Survey (SDSS) follow-up (Szkody et al., 2002, 2003, 2004, 2005,

2007, 2009). This list was supplemented with all newly discovered eclipsing DN (e.g.

Warner & Woudt, 2010). The targets that were eventually observed depended on

scheduling constraints and target visibility. In Tables 2.1a, 2.1b, 2.1c and 2.1d I

present details of all of the ultracam/ultraspec observations used in this thesis.

Table 2.1a includes the objects CTCV 2354, CTCV 1300, SDSS 1152 and SDSS 1501,

which form the main basis of Chapter 4, Chapter 5 and Savoury et al. (2011). In

Table 2.1b, I present observations of the targets CSS080623, SDSS 0901 and PHL

1445. These systems are also included and analysed in Chapters 4 and 5, however,

they are not published in Savoury et al. (2011). Tables 2.1c and 2.1d contain details

of all remaining systems presented in Chapter 4 (SDSS 1250, SDSS 1555, SDSS

1524, SDSS 1325, SDSS 0750, CSS0806227, 1RXS J1808, SDSS 0920, GALEX0035,
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SDSS 1006, SDSS 0924 and SDSS 0935) that were not used for photometric mass

determinations or published in Savoury et al. (2011). This data was mostly used for

determination of ephemerides. Full object names are provided in Chapter 4.

In addition, this thesis has also made use of a large amount of archival ultracam

data, which are not discussed here. The reduction of this data was carried out by

William Feline and Stuart Littlefair in an identical manner to that described in §2.3.
For details of these observations, the reader is referred to table 1 in the following

publications: Feline et al. 2004a (OU Vir), Feline et al. 2004b (XZ Eri and DV

UMa), Littlefair et al. 2006a (SDSS 1702), Littlefair et al. 2007 (SDSS 1507) and

Littlefair et al. 2008 (SDSS 0903, SDSS 1227, SDSS 1433, SDSS 1501 and SDSS

1502).

Observations of the standard stars G162-66, G27-45, G93-48, G163-50 and Feige

22 were used to correct the magnitudes to the SDSS system (Smith et al., 2002),

as described in §2.4.2. Due to time constraints and poor weather, no standard star

could be observed to flux calibrate the data for SDSS 1152. Consequently, the Sloan

magnitudes of the comparison stars were taken and corrected for the instrumental

response of ultracam. To do this, the measured response curves for the filters

and dichroics used in ultracam were used to create an overall ultracam response

curve. This was combined with curves of theoretical extinction (Hickman, 2011) and

library spectra (Pickles, 1998) to obtain synthetic ultracam colours. The same

process was then repeated for the SDSS colour set, with the difference between the

two sets being the correction applied.

2.1.2 X-Shooter Spectroscopy

CTCV 1300 was observed using the X-Shooter (Vernet et al., 2011) in service mode

mounted on UT2 (Kueyon) on the VLT, at the Cassegrain focus on the nights be-

ginning 9 February 2010 and 6 March 2010. CTCV 1300 was observed using the
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1.0”x11” slit in the ultra-violet blue arm (UVB), the 1.2”x11” slit in the visible-red

arm (VIS), and the 0.9”x11” slit in the near-infrared arm (NIR). This corresponded

to dispersions of ∼ 0.133 Å pixel−1 in the UVB (at 4500 Å), ∼ 0.148 Å pixel−1 in

the VIS (at 7850 Å) and ∼ 0.544 Å pixel−1 in the NIR (at 17500 Å). This setup

provided a total resolving power, as measured by the width of the night sky lines,

of R = 5020 ± 180 (60 ± 2 km s−1) in the UVB, R = 6770 ± 360 (44 ± 2 km s−1)

in the VIS, and R = 4550 ± 350 (66 ± 5 km s−1) in the NIR-arm. These values are

in excellent agreement with those published in the X-Shooter user manual. Seeing

conditions on both nights were fair, varying between 0.5 and 1.5 arc-seconds, but

with flares of up to 2.0 arc-seconds.

In total, 48 spectra were obtained (24 on each night), covering a total of 1.5 orbital

cycles and a wavelength range of 3000-24800 Å. Exposure times were 235 seconds in

the UVB-arm, 210 seconds in the VIS-arm and 255 seconds in the NIR-arm, with

dead times between exposures of approximately 8, 9 and 1 seconds, respectively.

Observations of the standard star GD-153 (Bohlin et al., 1995) were used to flux

calibrate the data and correct for telluric absorption as described in §2.5.2. Due to an
error in the Phase 2 preparation, the data were obtained in ‘stare’ mode rather than

nodding along the slit as is normal for long slit infrared spectroscopy. Consequently,

the sky subtraction on the NIR-arm is significantly worse than is normally possible

with X-Shooter. Spectra of the spectral type templates GJ2066 (M2V) and GJ1156

(M5V) were also obtained. These data were taken on the nights of the 11 Dec 2009

and 28 Jan 2010, respectively.

No arc spectra were provided with the data set. An arc was obtained from the

ESO data archive.
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2.1.3 NIRI Spectroscopy

SDSS 1433 was observed using Gemini’s Near Infra-Red Imager and Spectrometer

(NIRI) (Hodapp et al., 2003) in service mode on the 8.1-m Frederick C. Gillett

Gemini North Telescope, on Mauna Kea, Hawaii. The setup comprised of the NIRI

spectrograph + f/6 camera, an Aladdin In-Sb 1024x1024 pixel array, a 0.75x110” slit

and a J-grism disperser with a dispersion of ∼ 0.133 Å pixel−1 (at 12500 Å). The

resolving power, as measured by the width of the night sky lines, was found to be

R = 454± 16 (661± 24 km s−1).

The data were obtained on nights beginning 2 July 2009, 7 May 2010, 26 May

2010, 27 May 2010, 15 June 2010 and 16 June 2010. In total 389 spectra cover-

ing a wavelength range of 10353.8-13959.1 Å (the J-band) were obtained. For each

spectrum exposure times were 59 seconds. The data was observed using a ‘nodding’

technique, where the target object is first observed at a given position on the slit (e.g.

position ‘A’) and then over subsequent frames this position is varied (e.g. A-B-B-A).

This procedure is standard for infrared observations and improves sky subtraction.

Nodding is described in greater detail in §2.2.5.
Observations of the standard star HIP 73593 (Monet et al., 2003) were taken at

the start of each night and again after every hour of science data. Exposure times

were 3 seconds. These observations were used to flux calibrate the spectra and correct

for telluric absorption, as described in §2.6.2. Arc spectra were taken after every hour

of science data using an argon lamp.

Seeing conditions on each night were good, typically varying between 0.4 and 1.2

arc-seconds.
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2.2 Data Reduction

In this section I describe the steps necessary to reduce and calibrate the data. Both

photometric and spectroscopic observations may be affected in similar ways by in-

strumental variations. As such, many of the methods used to reduce and calibrate

the data are common across different instruments.

2.2.1 Pipelines

The steps undertaken to reduce and calibrate the data are described in detail in the

text below. All data in this thesis was reduced using data reduction pipeline software.

For ultracam and ultraspec, the ultracam pipeline was used (e.g. Feline, 2005).

For X-Shooter, the European Southern Observatory’s reduction extraction tool (ES-

OREX), equipped with the X-Shooter pipeline version 1.2.2 (Modigliani et al., 2010)

was used. For the NIRI data, the Image Reduction and Analysis Facility (IRAF2)

was used to reduce and combine the data, whilst Tom Marsh’s pamela software was

used to extract the spectra.

All data analysis was carried out using Stuart Littlefair and Will Feline’s LFIT

programme (described in detail in Chapter 3) and Tom Marsh’s ponto and molly

software3.

2.2.2 Bias Subtraction

A bias is added to every pixel on the CCD before the image is read out. An analogue-

digital converter cannot read out negative counts, and so the bias is added to keep the

counts on each pixel positive, thus preventing a systematic error that would otherwise

result when reading out low counts. The added bias is roughly constant, but due to

2Available at http://iraf.noao.edu/
3Freely available at http://www2.warwick.ac.uk/fac/sci/physics/research/astro/people/marsh/software/
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Figure 2.1: An example g-band master bias frame, created using the ultracam
pipeline software. Colours are inverted for ease of viewing.

imperfections on the CCD, the value of the bias can vary from pixel-to-pixel.

Bias can be corrected for by constructing and then subtracting a master bias frame

from each individual science frame. To reduce the read-noise, the master bias frame

is usually an average of a series of individual bias frames. Individual bias frames can

be obtained by taking a zero second exposure when the CCD is not exposed to any

light. Because no photons are detected, the resulting image is only that of the bias.

Ultracam Photometry

A master bias frame was created for each entry in Table 2.1a, 2.1b, 2.1c and 2.1d by

taking a series of bias frames (usually 51 or 101) and then combining them using a

clipped mean, rejecting outliers at the 3-σ level. An example master bias frame is

shown in Figure 2.1.
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X-Shooter Spectroscopy

With X-Shooter, a master bias frame was produced for the UVB and VIS arms. It

was not required for the NIR arm, because it is accounted for when subtracting a

dark frame (see §2.2.4). The master bias frame was created from five individual bias

frames, which were combined using a median-stack. Contributions from outlying

counts were removed at the 5-σ level.

NIRI Spectroscopy

A master bias frame was not required for reducing NIRI data. This is because when

the frames taken at different sky positions are subtracted from each other (see §2.2.5),
any additive background is removed.

2.2.3 Flat Fielding

The sensitivity of a CCD varies across its surface. This may be due to manufac-

turing imperfections, geometric variations between pixels or mechanical stress. Con-

sequently, two pixels on the same CCD that are exposed to the same level of light

may produce a different number of counts. These variations can occur on small scale

(pixel to pixel) or large scale (gradients across the chip). Large scale variations may

include dust on the chip, or vignetting, where the brightness of an image is reduced as

one traverses further from the centre of the image. This can be seen clearly towards

the left side of Figure 2.2. This is usually the result of off centre light rays being

partially blocked by elements within the telescope or instrument.

Sensitivity variations can be corrected for by dividing the science frame by a

normalised flat field. The flat field is normalised to unity to measure the response of

each pixel relative to each other. A flat field can be created by taking an exposure

of a uniformly illuminated field, usually during twilight. The response of the CCD is
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also dependent on wavelength, and so the exposures must be taken using the same

filters as the data. A master flat field is usually constructed from a series of individual

flats that have been bias subtracted. For photometric flats, normalisation is carried

out by dividing by the mean or median pixel value. For spectroscopic flat fields,

additional care must be taken, as the raw flat field frame will be sensitive to not

only the pixel to pixel variations, but also the spectral response of the instrument

and the spectral energy distribution of the illumination source. In this thesis, the

spectroscopic flat fields were normalised by fitting a spline or polynomial fit to the

flat field spectrum in the spatial direction and then dividing by this fit. This removes

the spatial variation, but not the pixel to pixel variations or spectral shape.

When the science frames are divided by the resulting, normalised flat field, the

pixel to pixel variations are removed from the science frame. The spectral shape is

removed during the flux calibration process (see §2.5.2 and §2.6.2).

Ultracam Photometry

A flat field was created by observing a blank area of the sky at twilight. This was

done over many exposures, typically 30-40 per filter. To mitigate against the presence

of very faint stars, the telescope was stepped in a spiral pattern around the sky. This

is so that any faint stars that are present will appear at different positions on the

CCD on each frame and thus when the frames are combined, they will be rejected

from the average as outlying points.

The individual frames were combined in a similar way to when constructing the

master bias, that is using a clipped mean with outliers removed at the 3-σ level. The

resulting frame was then normalised by its mean pixel value to produce a master flat.

During the combination process, frames with counts above or below a threshold value

(∼30,000 and 5,000, respectively) were automatically rejected. This is because frames

with counts below the lower limit are likely to introduce noise into the master flat,
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Figure 2.2: An example g-band master flat frame, created using the ultracam
pipeline software. Colours are inverted for ease of viewing.

whilst those above the threshold are likely to be saturated or suffer from ‘peppering’

(Hickman, 2011). The cause of peppering is currently unknown, but the effects

are easy identify. Adjacent pixels appear to have massively differing count levels,

resulting in a ‘salt and pepper’ like appearance on the CCD. An example master flat

frame is shown in Figure 2.2.

X-Shooter Spectroscopy

X-Shooter flat frames are taken in groups of five and stacked in the same way as the

master bias frame, but then each order is normalised by the median pixel value for

that order. The flat frames were taken using a halogen lamp within the spectrograph’s

internal calibration unit. For the UVB arm, an additional set of flats must be taken

using a deuterium (2D) lamp. This is to provide good counts across all orders.
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NIRI Spectroscopy

NIRI flat frames were taken with the Gemini Facility Calibration Unit (GCAL)

Quartz-halogen lamp (Ramsay-Howat et al., 1997). Nine flat frames were provided

with the data release per hour of science data. The normalised flat field was created

using the IRAF ‘nsflat’ command. Here, the master flat field was constructed by

first combining the individual frames (average) and then by dividing the exposure

data by a smoothed version of the same data. The smoothed data was generated

by fitting a spline to the collapsed flat field spectrum in the spatial direction. This

process also produced a bad pixel map by flagging normalised pixels that fall above

or below a user defined threshold. For the data presented in this thesis, thresholds

of 0.8 and 1.2 were adopted.

2.2.4 Dark Frames

In the absence of any light falling on a detector, a signal greater than that of the

bias is still registered. This signal arises because of thermal excitation in the semi-

conductor layer of the CCD. This excitation can cause electrons to randomly jump

into the conduction bands of a CCD, which are then subsequently stored in the

CCD’s potential wells and registered as an additional signal, known as the dark

current. These electrons are indistinguishable from photo-electrons.

Dark current can be removed by subtracting a dark frame. A master dark is

created by exposing the CCD for a significant period of time in the absence of light

over a number of frames and then combining these frames (correcting for the exposure

time).
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Ultracam Photometry

Dark subtraction is not normally necessary when using ultracam. The CCDs

are Peltier cooled to -40oC, resulting in a dark current usually less than 0.1 elec-

trons/pixel/sec. Given the read noise of the instrument is typically ∼3.5e− (Dhillon

et al., 2007), exposure times would need to be 35 seconds for the dark current to

match the read-noise. For all the data presented in Tables 2.1a, 2.1b, 2.1c and 2.1d,

the exposure times are considerably shorter than this, usually between 2 and 5 sec-

onds (with a maximum of 9.88 seconds) and so dark current can be neglected. The

ultracam data presented in this thesis was not corrected for dark current.

X-Shooter Spectroscopy

Dark frames are not necessary for the UVB and VIS arms as the contribution is

negligible (� 0.02 electrons/pixel/sec). In the NIR arm, dark current is much higher

at approximately 0.35 electrons/pixel/sec. Three dark frames were provided, taken

with the shutter closed with exposure times equal to that of the science observations

(255 seconds in the NIR arm). The mean level of each dark frame was calculated

(with outliers rejected at the 9-σ level) and then subtracted from each frame. A

master dark frame was created by combining the resulting frames with a median

stack and then adding the average of the individual means back. This improves the

rejection of outliers. Remaining bad/noisy pixels were then removed at the 9-σ level

and stored in an additional bad pixel map. Because the exposure times are equal to

the exposure times of the science frames, the dark frames do not require correction for

exposure times. These dark frames also remove the bias because both dark current

and bias are additive.
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NIRI Spectroscopy

As with the master bias frame, a master dark frame is not required for reducing NIRI

data. This is because the dark current is removed during the ‘nodding’ procedure

(see §2.2.5).

2.2.5 NIRI Nodding

At infrared wavelengths, the sky and telescope make significant contributions to the

background. In addition, these contributions are often highly variable over short

timescales. The standard method of dealing with this is to employ a technique called

‘nodding’. Here, the position of the telescope is moved slightly (∼2 arc-seconds)

between observations so that the target spectrum switches between two different

spatial positions on the detector. Subtracting adjacent observations (that are flat-

fielded) during the data reduction phase removes the emission from the sky and

telescope from the resulting frame, as shown in Figure 2.3. In addition, it also

removes bias and dark current. The subtraction of frames was carried out using the

‘nsreduce’ command in IRAF.

Each complete batch of NIRI observations were taken in groups of 54 spectra.

These 54 spectra were averaged in groups of four, with one remaining group of two,

using the ‘nscombine’ command in IRAF. This was done in an effort to improve

the signal-to-noise of the data. Groups of four were chosen as they improved the

signal-to-noise of the data, without significantly degrading the time resolution. The

nscombine command shifts and combines frames that are taken at different positions

on the detector (e.g. as a result of nodding). These shifts are calculated using the

World Coordinate System (WCS) information stored in the fits headers of each file.

The frames were combined using a clipped mean, with outlying points rejected at

the 5-σ level.
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Figure 2.3: The nodding process. On the top left is a single J-band science frame,
on the top right the next observation in the sequence. The position of the target
spectrum has moved between spectra. The bottom image is the result of subtracting
the second image from the first.

2.3 Aperture Photometry

The ultracam data presented in this thesis were extracted using standard, differ-

ential aperture photometry. The counts from within a user defined aperture were

summed to obtain the number of counts from a target object. Two further apertures

surround the target, which are used to define an area of the sky (the sky annulus).

The average brightness of the sky was estimated using a clipped mean of the counts

from the sky annulus and then subtracted from each pixel within the star aperture.

The sky error was estimated using the variance in sky photons within the sky annulus.

The counts of a nearby (within the same field of view), bright comparison star were

also measured using the same aperture sizes. This way, the ratio of counts of the tar-

get to the comparison are obtained. Assuming that the point-spread function (PSF)

is constant across the field, then the same fraction of counts are recorded for each

object. If the conditions are less than optimal or are changeable (e.g. cloud cover,
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seeing variations, airmass), then both stars are affected by the same amount and thus

the ratio of counts should remain the same. This is invaluable when studying the

variability of an object.

The size of the apertures are crucial to the quality of the final data output. If

the aperture is too large, then additional noise from the sky and additional read-out

noise is included, whilst the counts from the target remains the same. This will lower

the signal-to-noise ratio. If the aperture is too small, then fewer counts from the

target will be recorded. When using differential photometry, this is not fatal, as the

same ratio of counts are also lost from the comparison star. However, the signal-to-

noise will be lower because the total number of counts is lower. The best aperture

size is one that maximises the object counts, without adding additional noise. Such

an aperture will therefore scale with the size of the FWHM of the stellar profile.

However, the variation of the seeing across a set of observations (see e.g. Tables 2.1a,

2.1b, 2.1c and 2.1d) means that the size of the FWHM, and therefore the size of the

ideal aperture, will also vary with the seeing. Therefore, to maximise the signal-to-

noise ratio, variable aperture sizes were used; that is the aperture size is different

for each individual frame taken. The size of these apertures were defined by fitting

a PSF to the bright comparison star and scaling both apertures by a set amount of

the resulting full-width at half maximum (FWHM). A Moffat profile (Moffat, 1969)

was used, as this produced a better fit than a Gaussian. For fainter targets where

the noise is sky-limited, Naylor (1998) recommends using an aperture radii around

1.5 times the FWHM. The targets presented in this thesis were reasonably bright,

so 1.5 was usually an underestimate. A ratio of 1.7 was adopted for all data in this

thesis. An example aperture selection with profile fit is shown in Figure 2.4.
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Figure 2.4: The aperture selection process for ultracam data reduction complete
with profile fit for object 2, the comparison star.
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2.4 Flux Calibration

The process of aperture photometry described in the previous section gives the ratio

of counts from the target to the comparison star, which can be used to derive a light

curve for the target. It does not give the total number of counts, as some fraction of

the total counts lie outside the aperture. In order to correctly calibrate the counts

into fluxes a three stage process is carried out;

1. Correction for extinction;

2. Correction for instrumental response;

3. Conversion of calibrated magnitudes into flux units.

2.4.1 Extinction

Extinction is the absorption and scattering of light in the Earth’s atmosphere, which

can drastically reduce the amount of flux received from a star. The data in this

thesis was corrected for first order extinction effects only, as the secondary effects

are typically small in comparison (e.g. Smith et al., 2002). The correction varies

depending on atmospheric conditions, the bandpass of observation, and the position

of the target on the sky. The position of the target provides the airmass, which is

the length of the column of air that the light has passed through relative to that at

the zenith.

The flux received was converted to an instrumental magnitude, which was then

corrected to the instrumental magnitude above the Earth’s atmosphere. This con-

version is given by

minstr,0 = −2.5 log10
C

Texp

− kλ secZ, (2.1)

where minstr,0 is the instrumental magnitude in a given filter corrected to above the

Earth’s atmosphere, C is the number of counts received in a given filter, Texp is the
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exposure time, kλ is the extinction coefficient for a given filter and secZ is the airmass

of an object. For all data sets, only the r′-band extinction coefficient was required.

The remaining coefficients (g′ and u′) were derived from the r′-band coefficient using

theoretical ultracam extinction curves (Hickman, 2011). For observations taken

using the WHT, the nightly extinction coefficients measured by the Carlsberg Merid-

ian Telescope on La Palma were used to correct the data. For observations using the

VLT and NTT, no nightly extinction coefficients were measured or provided, and so

estimated extinction coefficients4 were used. A study of the extinction above Paranal

(Patat et al., 2011) found that atmospheric extinction varied over the course of a year

varied by around 0.04 magnitudes, except for wavelengths shorter than 4000 Å, where

the variability was typically 0.07 magnitudes. Therefore, the estimated coefficients

can be considered a reasonable approximation.

2.4.2 Instrumental Response

The extinction-corrected, instrumental magnitude needs to be converted to a stan-

dard magnitude system. This is because the response of every instrument and tele-

scope is different. For example, two separate instruments observing the same target

at the same time may record a different number of counts and thus different instru-

mental magnitudes. This may be due to differences in filter response, CCD response,

or differences in the telescope optics. To prevent ambiguity, these magnitudes are

converted to a standard magnitude system by defining a zero point, or offset, for each

filter.

ultracam uses the SDSS photometric system, and so the zero point can be

determined by observing SDSS standard stars (Fukugita et al., 1996; Smith et al.,

2002). The zero point, ZP , is given by the difference in observed instrumental

magnitude of the flux standard, corrected to zero airmass, and the expected (defined)

4See http://www.ls.eso.org/lasilla/Telescopes/2p2/D1p5M/misc/Extinction.html
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magnitude of the flux standard. Combining this zero point with Equation 2.1 yields

m = ZP − 2.5 log10
C

Texp

− kλ secZ, (2.2)

where m is the calibrated magnitude of a star in a given filter. In practice, the

magnitude of the comparison star is found first, and then the magnitude of the

target star by

mtarget = mcomparison − 2.5 log10
Ctarget

Ccomparison

. (2.3)

2.4.3 Absolute Flux Calibration

The method outlined above converts the observations onto the AB magnitude system

(Oke & Gunn, 1983). The flux per unit frequency and magnitude are related by

Fν(mJy) = 3.631× 106 × 10−0.4m. (2.4)

2.5 X-Shooter Extraction

The X-Shooter data format is complex, with highly curved orders that require straight-

ening and merging before extracting (see Figure 2.5). The X-Shooter data in this

thesis were reduced using a physical model of the X-Shooter instrument as described

by Bristow et al. (2008) and Modigliani et al. (2010). In practice, the X-Shooter

physical model is a set of matrix transformations, each of which represent an optical

surface within the spectrograph. The matrices describe physical quantities, such as

temperature, angles and distances between optical surfaces, that affect and describe

the passage of a photon of known wavelength through the spectrograph. The data

reduction cascade involves calibrating this physical model.

A first order guess is made of the spectral format of the instrument by locating
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Figure 2.5: The highly curved orders of X-Shooter. From Top to bottom, they are
the UVB, VIS and NIR arms.
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the positions of emission lines from a single pinhole arc via a 2D Gaussian fit. This

first guess solution takes into account information such as instrument temperature,

that is available in the fits headers of each frame. These positions are then used to

locate the centroids of each spectral pixel bin on a single pinhole flat (continuum).

This allows for an accurate determination of the order tracing. The full, physical

model of the instrument was then produced using a multi-pinhole arc frame by fit-

ting 2D Gaussians to the positions of these lines. This allows the determination of

pixel position (X, Y ) for any traced order number (m), wavelength (λ) and position

along the slit (s). The wavelength solution was tweaked further through use of arc

line spectrum taken from the ESO archive. From residuals to the line fitting, this

wavelength calibration has a relative accuracy of ∼1 kms−1.

The data were extracted in the standard manner for ‘stare’ mode observations;

that is each frame were reduced and extracted individually, rather than using nodded

frames. To extract the data, the individual frames were first bias (UVB and VIS)

or dark (NIR) subtracted and then an inter-order background fit was subtracted.

This fit was obtained using a spline fit to the positions of the order edges, which

were located whilst creating the master flat field. The data were then divided by the

master flat. Cosmic ray removal was carried out using Laplacian edge detection as

described by van Dokkum (2001). The sky background was then subtracted using the

method described by Kelson (2003). The frame was then rectified from pixel-space

(X, Y ), to a merged 2D spectrum (λ, s). A final, 1D spectrum was then extracted

using an optimal extraction technique (Horne, 1986; Marsh, 1989).

2.5.1 Flexure Correction

The orientation of the X-Shooter instrument varies with zenith distance (i.e. airmass

of target). Flexure can cause slight deviations in the position of the object along the

slit of the X-Shooter spectrograph. It may also result in small movements of the opti-
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cal elements within the instrument. These small movements alter the spectral format

and thus also the wavelength solution. It is estimated that for airmasses between 1

and 2, the resulting movement may be up to 1.2 pixels (∼20 kms−1 in the VIS arm).

These shifts, if present, may severely distort any radial velocity measurements, which

are required to be accurate and precise.

Flexure can be corrected for by using flexure compensation frames, which measure

the shift of a small set of emission lines compared to the physical model derived in

the previous section. Unfortunately, these frames were not provided as a standard

at the time of observation and were not available. Instead, the flexure was found by

measuring the shift of the observed sky lines relative to their positions measured by

Hanuschik (2003). The individual spectra were then moved by these shifts, which for

the VIS arm was typically between 10 and 35 kms−1. This was only attempted for

VIS arm observations, as precise radial velocity measurements were not required in

other wavebands.

2.5.2 Flux Calibration and Telluric Correction

In order to calibrate the received counts onto an absolute flux scale, the spectrum

of a spectroscopic flux standard is required. These stars have published values of

flux as a function of wavelength. If the star has very few intrinsic features, such as

rapidly rotating B stars, F stars, or white dwarfs, they can also be used to remove

atmospheric absorption features. These features, known as telluric lines, are the

result of the Earth’s atmosphere absorbing light at different wavelengths.

Flux calibration was achieved using standard star flux tables provided by Hamuy

et al. (1994) and Vernet et al. (2010), which list the defined flux of the star as a

function of wavelength. The flux as a function of wavelength were fit with a 10th

order polynomial to interpolate between values. Using this fit, and the observed

spectrum of the standard star, it was then possible to obtain a unique relationship
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between the observed counts, wavelength and absolute flux. This relationship was

then applied to the observed counts from the target star, to obtain the absolute flux.

This flux was not corrected for differential slit losses between the target and standard

star.

To correct for telluric absorption, a copy of the flux-calibrated standard star spec-

trum was divided by the above fit to the tabulated flux values for this standard. The

result was a spectrum normalised to one, containing only the telluric features. A con-

stant was then subtracted from this spectrum, and all regions that were not affected

by telluric absorption were set to zero, as shown in Figure 2.6. The resulting telluric

spectrum was then subtracted from the target spectrum. Because the strength of the

telluric lines vary depending on the airmass at which the telluric star is observed,

the telluric features on the standard must be scaled, because the standard and target

are rarely observed at the same airmass. This was done via an optimal subtraction

routine (see §3.6), optimising the region around the Na I doublet at 8190 Å. The re-

sulting VIS arm average spectrum, before and after telluric correction, is also shown

in Figure 2.6.

2.6 NIRI Extraction

The NIRI data were extracted using pamela. The object was first tracked across

the CCD, using the track command. The x position of the spectrum was fit as a

function of y using a 2nd or 3rd order spline fit. The target extraction aperture was

chosen using the regpic routine. Regions were also selected that defined the back-

ground. These background regions were fit with a low order polynomial (usually 3rd

order) using the skyfit command. This was done in order to estimate the background

level under the target profile, which was then subtracted. The selection process is

shown in Figure 2.7.
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Figure 2.6: The telluric correction process for X-Shooter data. From bottom to top,
the telluric spectrum, the uncorrected target spectrum and the target spectrum after
telluric correction. Spectra are offset by 0.6 mJy.
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Figure 2.7: The regpic routine in pamela. The regions marked in red are user defined
as background regions, whilst the green region is marked as target regions.

The data were extracted using an optimal extraction technique in pamela as

described by Marsh (1989). This technique adapts that described by Horne (1986) for

use with spectra that are curved or tilted across the CCD. In optimal extraction, each

column on the CCD is weighted according to the inverse variance in order to maximise

the signal-to-noise ratio (see e.g. Marsh, 1989, for a full mathematical treatment).

This results in a reduction of statistical noise, whist maximising the target flux. This

is particularly useful for low signal-to-noise data. The optimal extraction algorithm

is implemented into the profit and optext routines within pamela.

2.6.1 Wavelength Calibration

Arc spectra taken with an argon lamp were used to wavelength calibrate the data.

The arc spectrum has a series of sharp, discrete emission lines with known wave-
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lengths, superimposed on a weak continuum, as shown in Figure 2.8. By observing

the positions of these lines, a relationship between pixel number and wavelength can

be obtained via a polynomial fit. This relationship can then be applied to the relevant

science frames using the ‘acal’ command in molly. For the data presented in this

thesis, 4th order polynomials were used, resulting in an RMS scatter of ∼ 0.3 Å for

all NIRI spectra.

2.6.2 Flux Calibration and Telluric Correction

Observations of the standard star HIP 73593 (G2V) were used to flux calibrate the

target spectra and correct for telluric absorption. In general, tabulated flux values

are not available infra-red data, and so the method used to flux calibrate the target

spectra and correct for telluric absorption is different to that used for the X-Shooter

data. Because the standard star is the same spectral type as the Sun, a solar spectrum

was used derive the telluric spectrum and flux calibrate the standard spectrum. This

process is described below.

The observed standard star spectrum was first normalised to 1 by dividing by a

7th order polynomial fit. A solar spectrum, corrected for telluric absorption (data

provided by Kitt Peak Observatory5) was broadened to match the resolution of the

NIRI data and then normalised to 1 by dividing by a 7th order polynomial fit. The

solar spectrum was then subtracted from the standard star via optimal subtraction,

leaving only the telluric features, as shown in Figure 2.9. The telluric spectrum

was then re-multiplied by the polynomial fit, to reproduce the original standard star

spectrum, minus any stellar absorption lines.

The standard star is the same spectral type as the Sun, and so to a good approxi-

mation the standard star spectrum can be considered a black body spectrum with an

5Data from Kitt Peak Observatory available on ESO website. NSO/Kitt Peak FTS data used
here were produced by NSF/NOAO
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Figure 2.8: The emission lines of the Argon arc. The positions of these lines were fit
via a 4th order polynomial. Plot reproduced from
http://www.gemini.edu/sciops/instruments/niri/.
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Figure 2.9: The telluric correction process for NIRI data. The normalised Kitt
Peak solar spectrum (top) is subtracted from the normalised standard star spectrum
(middle). The result is the telluric spectrum (bottom) that may then be used for
correcting individual spectra. Spectra have been vertically offset for clarity.
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effective temperature of 5778 K (B) (e.g. Carroll & Ostlie, 1996), scaled to match the

reference flux of the standard star. Such a black body curve was created using the

‘black body’ command in molly and the magnitude/flux tables provided by Cutri

et al. (2003) and Tokunaga & Vacca (2005). In practice, the observed standard star

spectrum (T ), is affected by telluric absorption and the response of the instrument.

It therefore follows that the overall spectral response is given by

R =
T

B
, (2.5)

which is related to the observed target spectrum (Cobserved) by

Cobserved
λ = Rλ × Cflux,telluric

λ , (2.6)

where Cflux,telluric is the flux calibrated and telluric corrected spectrum that is re-

quired. Therefore, to obtain a final, flux calibrated and telluric corrected spectrum,

the individual object spectrum was multiplied by the black body curve and divided

by the telluric spectrum.



Chapter 3

Techniques of Data Analysis

3.1 Data Phasing and Ephemerides

When analysing the light curves of an eclipsing binary, the first step that should

be undertaken is to convert the x-axis from units of time, to a unit that defines

the point at which the star is in its orbit. This is the ‘orbital phase’, and it runs

from 0 to 1 over a cycle. Subsequent integers denote later cycles. Phase zero or

one is usually defined as the mid-point of the white dwarf eclipse. Assuming a

symmetrical white dwarf eclipse, this equivalent to the superior conjunction of the

white dwarf. In some literature (e.g. Tappert et al., 2004) phase zero is defined as

the point of minimum light. For systems with prominent bright spots, this can lead

to a systematic disagreement of mid-eclipse times by up to a few minutes between

the two definitions of phase zero (see §4.2).
The times of white dwarf mid-ingress, Twi, and mid-egress, Twe, were determined

by locating the minimum and maximum times, respectively, of the smoothed light-

curve derivative (e.g. Wood et al., 1985). A median filter was used to smooth the

data, and then the derivative was calculated. A box-car filter was then applied to

the derivative. Gaussians were fit to the resulting light curve derivative to locate the

66
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the minimum and maximum values. These points correspond to the mid-points of

white dwarf ingress (Twi) and white dwarf egress (Twe). If a prominent bright spot

was visible in the light curve, the ingress and egress times were inspected to ensure

that the bright spot ingress and egress times had not been detected instead. The

times of mid-eclipse, Tmid, were determined by assuming the white dwarf eclipse to

be symmetric around phase one, and taking Tmid = (Twi + Twe)/2. The accuracy

of this technique is comparable to the time resolution of the data. The orbital

ephemeris for a given system was found via a linear least-square fit to the eclipse

times and cycle numbers listed in Tables 2.1a, 2.1b, 2.1c and 2.1d, in addition to

eclipse times published in the literature (see Table 4.1 and references therein). The

orbital ephemerides were of the form

Tmid(HJD) = T0(HJD) + PorbE, (3.1)

where Tmid is the mid-eclipse time for cycle E, Porb is the orbital period and T0 is

the mid-eclipse time of cycle 0. In most cases there was no evidence of any O-C

variations (see §4.2 and §7.2.2 for details of exceptions). All eclipse times presented

in this thesis are co-ordinated universal time (UTC), corrected to the heliocentre.

The errors on the eclipse times in Table 2.1a, 2.1b, 2.1c and 2.1d are set by the

accuracy of determining the maximum and minimum times of mid-ingress Twi and

mid-egress Twe. These errors were then adjusted when calculating the ephemerides

to give χ2 = 1 with respect to a linear fit. The errors on the eclipse times in the

literature, where not explicitly stated, are estimated by giving χ2 = 1 with respect

to a linear fit to those times only.
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3.2 A Physical Model of the Binary System

The geometry of an eclipsing binary system allows for the determination of the system

parameters by measuring the timings of the white dwarf and bright spot eclipse. It

is possible because there exists a unique relationship between the width of the white

dwarf eclipse (Δφ), the inclination (i) and the mass ratio (q) (Bailey, 1979). This

can be seen by considering an eclipse at a high inclincation and low inclination; for

the low inclination case, the radius of the secondary star must be larger to reproduce

the same eclipse width as in the high inclination case. From §1.1.2, the radius of

a Roche lobe filling secondary star depends only upon q, and so Δφ = f(q, i). By

assuming that the bright spot lies on the ballistic trajectory from the secondary star,

the path of the gas stream also depends only upon q (e.g. Hellier, 2001), as shown in

Figure 3.1. Therefore the timings of the bright spot ingress and egress also depend

upon q and i. Measuring Δφ and the timings of the bright spot ingress and egress

therefore provides three constraints for which q and i can be solved.

In practice, to determine the system parameters a physical model of the binary

system is used to calculate eclipse light curves for the white dwarf, bright spot,

accretion disc and secondary star. Feline et al. (2004b) showed that this method gives

a more robust determination of the system parameters in the presence of flickering

than the derivative method of Wood et al. (1986). The model itself is based on the

techniques developed by Bailey (1979), Smak (1979), Cook & Warner (1984), Wood

et al. (1985), Wood et al. (1986), Horne et al. (1994), Littlefair et al. (2008) and

Copperwheat et al. (2010) and relies on just four assumptions: the bright spot lies

on the ballistic trajectory from the secondary star; the secondary star fills its Roche

lobe; the white dwarf is accurately described by a theoretical mass-radius relation;

and the whole of the white dwarf is visible with an unmodified surface brightness.

These assumptions cannot be tested directly, but it has been shown that the masses
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Figure 3.1: Gas stream trajectories computed for different mass ratios.
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derived with this model are consistent with other methods commonly employed in

CVs over a range of orbital periods (e.g. Feline et al., 2004; Tulloch et al., 2009;

Copperwheat et al., 2010, 2012, Chapters 6 and 7 of this thesis).

The model used by Littlefair et al. (2008) had to be adapted due to the prominent

bright spot observed in CTCV J1300-3052 (see Chapters 4 and 5). The old (simple)

model fails to correctly model the bright spot ingress and egress features in this

system satisfactorily and results in a poor fit. Following Copperwheat et al. (2012),

four new parameters were added to the model to account for a more complex variety

of bright spot shapes. This brings the total number of variables to 18. These are:

1. The mass ratio, q = M2/Mw.

2. The white dwarf eclipse phase full-width at half-depth, Δφ.

3. The outer disc radius, Rd/a, where a is the binary separation.

4. The white dwarf limb-darkening coefficient, Uw. This is defined by Il/I0 =

1 − Uw(1 − cos β), where Il/I0 is the ratio of the intensity at the limb of the

star compared to the intensity at the centre, and β is the angle between a line

normal to the stellar surface and the line of sight of the observer.

5. The white dwarf radius, Rw/a.

6. The bright spot scale, S/a. The bright spot is modelled as two linear strips

passing through the intersection of the gas stream and disc. One strip emits

isotropically, while the other beams in a given direction. Both strips occupy

the same physical space. The intensity distribution is given by (X/S)Y e−(X/S)Z ,

where X is the distance along the strips. The non-isotropic strip does not beam

perpendicular to its surface. Instead the beaming direction is defined by two

angles, θtilt and θyaw.
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7. The first exponent, Y , of the bright spot intensity distribution.

8. The second exponent, Z, of the bright spot intensity distribution.

9. The bright spot angle, θaz, measured relative to the line joining the white dwarf

and the secondary star. This angle defines the direction of the two strips, and

allows for adjustment of the phase of the orbital hump.

10. The tilt angle, θtilt, that defines the beaming direction of the non-isotropic strip.

All emission from the non-isotropic strip is beamed in this direction. This angle

is measured out of the plane of the disc, such that θtilt = 0 would beam light

perpendicular to the plane of the disc.

11. The yaw angle, θyaw. This angle also defines the beaming direction of the

non-isotropic strip, but in the plane of the disc and with respect to the first

strip.

12. The fraction of bright spot light that is isotropic, fiso.

13. The disc exponent, b, describing the power law of the radial intensity distribu-

tion of the disc.

14. A phase offset, φ0.

15. The flux contribution of the white dwarf.

16. The flux contribution of the secondary star.

17. The flux contribution of the accretion disc.

18. The flux contribution of the bright spot.

The goodness of fit for a given model was found by calculating χ2. The uncer-

tainties for each parameter are expected to follow a normal distribution.
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Figure 3.2: Bright spot beaming angles for the simple and complex bright spot
models. The bright spot is located on the dotted line, which is parallel to the line of
centres of each star.

In the simple model used by Littlefair et al. (2008), the beaming angle of the

second bright spot strip was fixed perpendicular to the surface of the first strip,

as shown in Figure 3.2. The complex model allows for a larger variety of beaming

orientations. In Littlefair et al. (2008), the bright spot intensity distribution followed

the same form of (X/S)Y e−(X/S)Z , but the exponents Y and Z were fixed at 2 and

1, respectively. Altering these exponents result in a different intensity distribution

along the strip, as shown in Figure 3.3. Together, the additional angles and variable

exponents allow for more complex bright spot ingress and egress shapes. The bright

spot model itself is not physically motivated. The aim of the bright spot model is to

reproduce a range of bright spot ingress and egress shapes in such a manner that q

is not affected by the shape of ingress and egress, only their positions. In this bright

spot model the brightest part of the bright spot is always at the intersection of the

gas stream and accretion disc and so provided this is not violated, the mass ratios

provided by this model should be reliable. Because the bright spot model is not

physically motivated, the parameters obtained through the fitting process should be

treated with caution.
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Figure 3.3: The bright spot intensity distribution, as defined by I = (X/S)Y e−(X/S)Z ,
for a range of different X and Y values. The X-axis is the distance along the strip,
X.
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In this thesis, a Markov chain Monte Carlo (MCMC) analysis was used to adjust

all parameters bar Uw and the flux contributions. MCMC analysis is an ideal tool

as not only does it provide a robust method for quantifying the uncertainties in

the various system parameters, it is more likely to converge on the global minimum

rather than a local minimum. MCMC is described in detail in §3.3. Once the

model parameters were optimised, the system parameters were calculated following

the method outlined in §3.4.

3.2.1 White Dwarf Model Atmospheres

The white dwarf temperature and distance were found by fitting the three-colour

white dwarf fluxes from the model fit to the predictions of the hydrogen rich, white

dwarf model atmospheres of Bergeron et al. (1995). The white dwarf temperature

was used to correct the white dwarf mass-radius relationships, which were in turn

used to calculate the final system parameters (see §3.4).
An estimate of the white dwarf limb-darkening coefficient was obtained by using

the white dwarf effective temperature and an estimate of log g, in conjunction with

the stellar atmosphere codes of Gänsicke et al. (1995). The model spectra were folded

through ultracam response curves (Hickman, 2011) in order to convert the spectra

to fluxes. These fluxes were then fit as a function of the limb position in order to

derive limb-darkening parameters appropriate for each band (e.g. Littlefair et al.,

2006b, 2007).
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3.3 Markov Chain Monte Carlo

3.3.1 Bayes Theorem and MCMC

MCMC is a stochastic approximation used to carry out Bayesian inference, which is

a statistical approach of expressing all forms of uncertainty in terms of probability.

Bayesian inference derives a quantity known as the posterior distribution, which in

this thesis, is the probability distribution of a set of parameters, M, assuming some

model, and given the available data (D). It is a probability distribution function

(PDF), often expressed as P (M |D). From Bayes rule, the posterior distribution of a

set of parameters is given by

P (M |D) =
P (D|M)× P (M)

P (D)
, (3.2)

where P (D|M) is the likelihood function, P (M) is the set of prior distributions, and

P (D) is the marginal likelihood function, which is used for normalisation. P (D)

is very difficult to determine when a model contains a large number of dimensions.

However, it is not required for parameter estimation, because it is only the shape of

the distribution that is of interest, and a direct comparison between two models is not

required (e.g. Gregory, 2007). The prior distribution, P (M), expresses the knowledge

of a given parameter before taking into account the data. Often, it is a subjective

assessment based upon reasonable expectation. The likelihood function is a measure

of how likely the data is to be observed, given a particular model configuration.

In principle, the aim is to solve Bayes formula for P (M |D); the probability dis-

tribution of the model parameters given the available data and prior knowledge. The

most probable parameter set is wanted, along with the fully quantified uncertainties

that arise with it. However, solving Bayes formula for a complex model with many

parameters such as the one described in §3.2, is not analytically feasible. MCMC is
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an approach to estimating the posterior probability distribution, P (M |D). Although

P (M |D) is unknown, if random samples can be drawn from P (M |D), then P (M |D)

can be inferred using those samples. The larger the number of samples drawn, the

more accurate the inferences of the total sample are. This is a Monte Carlo analysis,

and is used to great effect in Chapter 6. By constructing a Markov chain which has

parameter space M as its state space and P (M |D) as its limiting, stationary distri-

bution, it is possible to sample from P (M |D), and then make Monte Carlo inferences

about M .

3.3.2 Conditions of MCMC

An Markov chain will only converge on P (M |D) if it is aperiodic, irreducible and

reversible (e.g. Smith & Roberts, 1993). An aperiodic chain is a Markov chain which

does not switch between two particular states in a regular periodic way. An irre-

ducible chain means that it is possible for the chain to reach every state with a

non-zero probability from any another state with a non-zero probability, in a finite

number of steps. If a chain is reversible, then there is a finite possibility that a

particular state may be revisited at some later point in the chain.

3.3.3 Metropolis-Hastings

A Markov chain can be produced by starting from an initial parameter set, MN ,

and proposing the next step in the chain, via a transition probability (or transitional

kernel), q(MN+1|MN), where MN+1 is the parameter set at the next step in the

chain. The transition kernel, q(MN+1|MN), depends only on the current state, MN ,

and no other state. This proposed step MN+1, is then accepted with a probability

α(MN+1|MN), such that the probability distribution of Mn+1, P (MN+1|MN) is given
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by

P (MN+1|MN) = q(MN+1|MN)α(MN+1|MN). (3.3)

If the step is accepted, the next state is set to the trial state. If the step is rejected,

the next state is set to the current state, MN+1 = MN , and a new trial state is drawn

from q(MN+1|MN).

There are several possibilities for the choice of α(MN+1|MN), the majority of

which are generalisations of either the Metropolis-Hastings (M-H) algorithm (Metropo-

lis et al., 1953; Hastings, 1970) or the Gibbs sampler (e.g. Casella & George, 1992).

In this thesis, the M-H algorithm is used to describe α(MN+1|MN), which is given by

α(MN+1|MN) = min[
P (MN+1|D)q(MN |MN+1)

P (MN |D)q(MN+1|MN)
, 1] (3.4)

(e.g. Gilks et al., 1995; Ford, 2005, 2006; Gregory, 2007). q(MN+1|MN) can take

any form, but for the chain to be reversible, the transition kernel must satisfy the

following criteria

q(MN+1|MN) = q(MN |MN+1). (3.5)

Gilks et al. (1995) show that if the above criteria are satisfied, then the detailed

balance equation can be reproduced, which must be satisfied in order to obtain a true

Markov chain (e.g. Smith & Roberts, 1993). From the detailed balance equation,

Gilks et al. (1995) go onto show that if MN is drawn from P (M |D), then MN+1

will also be from P (M |D), and that once one sample from P (M |D) is drawn, all

subsequent samples will also be be drawn from P (M |D). Thus, after a sufficiently

long period of initial random sampling (the burn-in), samples will eventually be drawn

from P (M |D), provided that Equation 3.5 is satisfied.
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3.3.4 MCMC in Practice

Provided Equation 3.5 is satisfied, and the prior, P (M), is ‘flat’ (P (M) ∼ 1), then

the transition probability, α(MN+1|MN), may be written as

α(MN+1|MN) = min[
P (D|MN+1)

P (D|(MN)
, 1]. (3.6)

Because the likelihood function P (D|M) ≈ e[−χ
2/2], the Metropolis-Hastings algo-

rithm was implemented according to Ford (2005), and is described as follows:

1. Start the chain with an initial state, M0, and step number N.

2. Generate a trial state, MT , according to the transition kernel, q(MN+1|MN).

3. Calculate χ2(M) for the trial state and the current state.

4. Calculate α(MN+1|MN) = e−0.5[−χ
2(MT )−χ2(M0)].

5. Draw a random number, k, from a uniform distribution between 0 and 1.

6. If k ≤ α(MN+1|MN), set MN+1 = MT , otherwise set MN+1 = MN .

7. Set N = N+1.

8. Go to step 2.

The choice of q(MN+1|MN) is crucial to the practical implementation of MCMC.

Provided that q(MN+1|MN) satisfies Equation 3.5, it can take any form. A common

choice for q(MN+1|MN) is a Gaussian distribution centred aroundMN , with an initial

estimate of the scale parameters (e.g. Ford, 2005, 2006). However, care must be

taken, as a poor choice of q(MN+1|MN) may lead to poor sampling (e.g. sampling

far from P (M |D)), and a very slow rate of convergence towards P (M |D). The scale

of q(MN+1|MN) is vital, as if there is a large variation between trial states (i.e. a
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large dispersion), then a large number of states will be rejected, and the chain will

take a long time to converge. Likewise, if the chain accepts too many steps, then

the chain will behave like a random walk and also converge very slowly (e.g. Gilks

et al., 1995; Ford, 2005). The ‘mixing’ of a chain is also a crucial factor. A chain

is said to ‘mix poorly’ when large numbers of steps are rejected. A chain may mix

poorly even after convergence. A well mixed chain accepts enough steps to sample

efficiently around P (M |D). To aid the mixing of a chain, it is common practice to

introduce a scale factor. The scale factor scales the variance of the Gaussians used to

generate q(MN+1|MN), and is tuned to keep the acceptance rate near 0.23. This was

found by Roberts et al. (1997) to be the optimal value. This improves the mixing of

the chain, and enables convergence towards P (M |D) on an acceptable time scale. In

this thesis, the scale factor was only varied during the initial stages of the MCMC, as

altering it throughout would violate Equation 3.5, making the chain non-Markovian.

This would result in not sampling from the true P (M |D).

For models with several parameters or where parameters exhibit strong correla-

tions, independent Gaussian distributions are an inefficient choice of q(MN+1|MN),

regardless of the scale factor, as shown in Figure 3.4. Therefore, in this thesis, multi-

variate Gaussian distribution are used. These are defined by a covariance matrix,

which describes how each of the various parameters are related. For the MCMC

simulations described in this thesis, an initial estimate of q(MN+1|MN) was obtained

using a Levenberg−Marquardt (LM) algorithm (Press et al., 1992). The resulting

parameters obtained from the LM fit were used as a starting point for the MCMC

simulation. A typical MCMC was split into two sections; the burn-in phase, which

was used to converge towards P (M |D); and the production phase, which samples

from P (M |D). During the burn-in phase, the covariance matrix and scale factor

were updated every 5,000 steps. A typical burn-in phase included a total of 350,000

steps. After the burn-in phase, if the chain was judged through a by-eye inspection to
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Figure 3.4: Left: Two parameters with strong correlations are poorly described by
independent Gaussian distributions. This choice of q(M1|M2) would lead to poor
sampling. Right: A multi-variate Gaussian distribution is a better approximation to
the desired distribution, and will sample far more efficiently.

have converged and mixed well, the production phase was initiated. The production

phase, also typically 350,000 steps, was started from the parameters obtained at the

final stage of the burn-in phase, with the covariance matrix and scale factor defined

using the final 5,000 steps of the burn-in phase. Example burn-in and production

chains are shown in Figure 3.5

3.4 Photometric Mass Determinations

The LFIT procedure provides optimised values of the mass ratio (q), the eclipse full

half maximum (Δφ1/2), and the white dwarf radius as a fraction of binary separation

(Rw/a). The inclination (i) is determined from q and Δφ1/2, via a binary chop search

using an accurate model of the Roche Lobe. When combined with the orbital period,

Porb, the remaining system parameters are solved by starting from Equation 1.1 and
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Figure 3.5: A plot of the MCMC burn-in chain (top) and MCMC production chain
(bottom) for the g′ band eclipses of SDSS 1152. Each chain corresponds to the
variables in our model, outlined in §3.2. The limb darkening coefficient of the white
dwarf, Uw, and the flux contributions of each component, were not modelled. The
flatness of each chain indicates the chain has converged to a solution, whilst the
scatter of the chain indicates that it is well mixed.
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substituting y = Rw/a and q = M2/Mw to obtain

Rw = y

(
GMw(1 + q)P 2

orb

4π2

)1/3

. (3.7)

Equation 3.7 can then be combined with a series of white dwarf mass-radius relation-

ships (Wood, 1995; Panei et al., 2000; Hamada & Salpeter, 1961), that are corrected

for the temperature of the white dwarf (see §3.2.1). This can then be solved for for

Rw, Mw and a. The relationships of Wood (1995) are favoured, because they have

thicker hydrogen layers which may be more appropriate for CVs. However, they do

not reach high enough masses for some of the systems presented in this thesis. Above

Mw = 1.0M�, the mass-radius relationships of Panei et al. (2000) are adopted. In

turn, these models do not extend beyond Mw = 1.2M�; above this mass the Hamada

& Salpeter (1961) relationship is applied. No attempt is made to remove discontinu-

ities from the resulting mass-radius relationship.

The mass of the secondary star, M2, is found using Equation 1.3 and Mw, whilst

the radius of the secondary star, R2/a, can be found using Equation 1.4. The radial

velocity of the secondary star, K2, can be found using the velocity form of Kepler’s

3rd law,

K3
2Porb

2πG
=

Mw sin3 i

(1 + q)2
, (3.8)

which in turn can be used to obtain Kw using Equation 1.3.

At each step in the MCMC chain the model values of q, i and Rw/a are used to

calculate the white dwarf mass Mw/M�, white dwarf radius (Rw/R�), secondary star

mass (M2/M�), secondary star radius (R2/R�), binary separation (a/R�) and the

radial velocities of the white dwarf and secondary star (Kw and K2, respectively).

Because each step of the MCMC has already been accepted or rejected based upon

the Metropolis-Hastings rule, the distribution function for each parameter gives an

estimate of the probability density function (PDF) of that parameter, given the
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constraints of our eclipse data. The PDFs obtained in each band fit by the model

can then be combined into the total PDF for each system, as shown in Chapter 5.

3.5 Radial Velocity Measurements

3.5.1 Cross-Correlation of the Secondary Star

In Chapter 6 the radial velocity of the secondary star, K2, is one of four components

used to measure the system parameters for the eclipsing CV CTCV J1300-3052. If

the spectral features of the secondary star are easily visible in the spectrum, then

the easiest way to determine K2 is via cross-correlation (Tonry & Davis, 1979). This

requires time-series CV spectra. The positions of a given absorption/emission line

are measured relative to the same feature on a template star at different phases of

an orbital cycle.

The template star is usually a star with similar spectral features to the secondary

star. If possible it should be the same spectral type, although often this is initially

unknown. Templates are usually bright, isolated stars with a known radial velocity

which should be removed before cross-correlating. The CV and the template spectra

should both be normalised by dividing by a constant and subtracting fits to the

continuum. The template star should also be broadened to match the smearing of

the CV spectra over the exposure time. The most accurate method to do this would

be to calculate the smearing in small time steps and sum the result. At each step,

the velocity shift of secondary star can be estimated from a first guess/estimate of

K2, and the brightness of features in the template scaled according to the estimated

brightness of the secondary star at a given point in its orbit. In practice, this is too

complicated to do and so the effect may be approximated by convolving the template



3.5. Radial Velocity Measurements 84

spectrum with a Gaussian of width given by

Vsmear =
2πtexpK2

Porb

, (3.9)

where Vsmear is the orbital smearing, texp is the exposure time, Porb is the orbital pe-

riod and K2 is the radial velocity of the secondary star (e.g. Watson & Dhillon, 2001).

K2 is usually the aim of the study, so a first guess/estimate is still required. The

template star also needs to be broadened by the rotational velocity of the secondary

star, v sin i (see §3.6). However, in order to determine v sin i, K2 is required, and

so in practice finding K2 and v sin i requires an iterative technique. Although this

method of calculating the orbital smearing is not strictly correct, the values of v sin i

derived in Chapter 6 using this technique were found to vary only slightly (± 3 km

s−1) when the amount of orbital smearing applied was varied between the minimum

(0 km s−1 at quadrature) and maximum amounts (65 km s−1 at conjunction). Given

that the amount of smearing makes such a small difference to the final result, it is

unlikely that changing the method used to apply the smearing will alter the result

significantly, and thus convolving the spectrum with a Gaussian can be considered a

reasonable approximation.

Once the CV and template have been normalised and the template broadened by

the appropriate amount, the CV and template spectra are re-binned onto a constant

velocity scale and then cross-correlated to find the difference in position (Δλ) between

the CV spectrum and template spectrum at a given orbital phase. Whilst cross-

correlating, a cross-correlation-function (CCF) is produced for each spectrum over the

wavelength range that was cross-correlated. The CCF is effectively the probability

function, P (v), where P is the probability that the radial velocity is v. The shift

between the CV spectrum and template spectrum, Δλ, can be converted to a velocity
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shift according to

V =
c(λcv − λtemplate)

λtemplate

, (3.10)

where V is the velocity shift, λcv is the position of the line in the CV spectrum,

λtemplate is the position of the line in the template star spectrum, and c is the speed

of light, 3× 108 ms−1. The velocity shifts as a function of orbital phase may then be

fit with a sine function according to

V = γ −K2 sin[2π(φ− φ0)], (3.11)

where V is the velocity shift, γ is the systemic velocity of the system, K2 is the radial

velocity of secondary star, φ is the orbital phase, and φ0 is the phase offset. K2 is

thus given by the amplitude of the sinusoid.

3.5.2 Skew Mapping

The secondary star features in CV spectra are often very weak, and the CCFs pro-

duced using the method outlined in §3.5.1 can produce weak, broad CCFs with many

spurious peaks caused by noise. In this situation, a technique known as skew map-

ping (Smith et al., 1993) can be used. Skew mapping relies on the fact that the true

peak in the CCFs follows the radial velocity curve of the secondary star, which moves

sinusoidally with orbital phase. By computing the line integrals for many different

sine curves (i.e. back-projecting the CCFs, see §3.10.2) the line integral with the

maximum contribution from the CCF provides the sinusoidal solution to the radial

velocity curve (Vande Putte et al., 2003). Skew mapping essentially co-adds the ab-

sorption features from the secondary star, strengthening the true CCF peak while

smearing out the noise peaks.

A detected secondary star would present itself as a peak in the skew map at Kx
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= 0, Ky = K2, assuming a systemic velocity (γ) of zero. If the peak lies off the Kx

= 0 axis, then γ can be estimated by applying different systemic velocities in the

back-projection until the peak is shifted onto the Kx = 0. By repeating the process

with a number of different spectral types, the one that shows the strongest peak in

the skew map provides an estimate of the spectral type of the secondary star.

3.6 Rotational Broadening and Spectral Type of

the Secondary Star

The value of v sin i and the spectral type of the secondary star can be estimated

via an optimal subtraction routine, which subtracts a constant times the normalised,

broadened template spectrum from the normalised, orbitally corrected CV spectrum.

The match between the template and CV spectra is measured by carrying out the

subtraction and then computing χ2 between the residual spectrum and a smoothed

version of itself. This method is used as it reduces the effect of the continuum

shape, so that the spectral type estimate is only a function of the relative absorption

line strengths. Because the templates are normalised, the multiplicative constant

gives the fraction of the light of the secondary star to the total light of the system.

By finding the value of rotational broadening and/or spectral type template that

minimises χ2, a value of v sin i and the spectral type of the secondary star (Dhillon

& Marsh, 1993; Marsh et al., 1994) can be deduced. This value of v sin i should then

be corrected for the intrinsic rotational velocity of the template star.

3.7 Spectroscopic Mass Determinations

Following the techniques outlined §3.5.1 and §3.6 yields values of the radial velocity

of the secondary star, K2, and the rotational velocity of the secondary star, v sin i.
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For an eclipsing binary system with measurements of K2, v sin i, Porb and Δφ1/2, the

system parameters can calculated as follows.

The secondary star rotates synchronously with the orbital motion, so K2 and

v sin i can be combined to get

R2

a
(1 + q) =

v sin i

K2

(3.12)

(e.g. Horne et al., 1993; Warner, 1995). Combining Equation 3.12 with Equation 1.4

gives two simultaneous equations that can be solved for q and R2/a. The orbital

inclination, i, is fixed by q and Δφ1/2, using geometrical arguments, (e.g. Bailey,

1979, §3.2). In this thesis, the inclination is determined from q and Δφ1/2 via a

binary chop search using an accurate model of the Roche Lobe. Using Equation 3.8,

the previously calculated values of q and i can be used to find the mass of the primary

star, Mw. From this, the mass of the secondary star, M2 and radial velocity of the

primary star, Kw can be found using Equation 1.3. The radius of the secondary star

can be calculated using the observed rotational velocity of the secondary star, v sin i,

according to

v sin i

R2

=
2π sin i

Porb

(3.13)

(e.g. Warner, 1995). The final parameter, the binary separation, a, can be calculated

using by substituting the values derived in the steps above into Equations 3.12 and

3.13.

3.8 The K2 Correction

In order to calculate accurate component masses, the centre of mass radial velocity

amplitude of the secondary star is required. However, the irradiation of the secondary

stars in CVs by the emission regions around the white dwarf and bright spot have
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been shown to influence the measured K2 (e.g. Wade & Horne, 1988). If absorption

lines are suppressed on the irradiated side of the secondary star, the centre of light

will be shifted towards the back of the star. Likewise, if emission is enhanced on

the inner face, the centre of light will be shifted towards the front of the star. The

measured value of K2 will either be larger (absorption) or smaller (emission) than

the true value.

It is possible to correct the measured K2 value if the distribution of absorption

or emission can be estimated. This can be done using the formula

K2 =
Kmeas

1− f(1 + q)(R2/a)
(3.14)

(Wade & Horne, 1988; Parsons et al., 2012a,b), where f is a constant between -1 and

1 that describes the distribution of absorption or emission across the stellar surface,

Kmeas is the measured radial velocity of the secondary star, q is the mass ratio and

R2/a is the radius of the secondary star in units of binary separation. For f=0, the

emission is distributed uniformly across the surface of the secondary star, while for

f=1 all of the flux is assumed to come from the sub-stellar point. A negative value

of f implies that the light originates from the back of the secondary star. Parsons

et al. (2010) show that if the emissivity is proportional to the incident flux, then

the correction factor is typically f=0.77 for optically-thin emission and f=0.50 for

optically-thick emission. Parsons et al. (2010) found that for the highly irradiated M-

star in the close binary NN Ser, most of the emission lines were somewhere between

optically thin and thick, rather than either extreme; thus it is likely the true value will

lie somewhere inbetween and thus a range of expected K2 values can be calculated

using Equation 3.14.
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3.9 Spectroscopic Distance Estimation

By finding the apparent magnitude (m) of the secondary star from its contribution

to the total light during eclipse, and by estimating the absolute magnitude (M), the

distance (d) in parsecs to the system can be calculated using the equation

5 log(d/10) = m−M − Aλ, (3.15)

where Aλ is the interstellar extinction along the line of sight in magnitudes and λ

is a given wave-band. For all observations in this thesis, Aλ was not known and

there was no way to estimate it. However, the objects studied in this these are close

(< 1 kpc), and so the effects of extinction should be relatively small. For this reason,

Aλ is assumed to be zero throughout.

The largest source of uncertainty using this method is the absolute magnitude

(Mλ) of the secondary star. This can be estimated using empirical relationships such

as those of Knigge et al. (2011). For a recent review of distance estimations in CVs,

see Gariety & Ringwald (2012).

3.10 Doppler Tomography

A CV typically subtends < 10−4 arc-seconds at Earth and so it is not possible to

resolve the individual components by direct imaging. It is therefore necessary to use

indirect methods. Doppler tomography is an indirect imaging technique developed

by Marsh & Horne (1988), which uses the velocity information contained in emission

line profiles at different orbital phases to determine the velocity-space distribution of

the emission in CVs. For a comprehensive review of Doppler tomography, see Marsh

(2001).
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3.10.1 Line Formation

If one considers a single particle at some point in the binary that is moving parallel

to the orbital plane, then the emission will trace a sinusoid around the mean velocity

of the system. This sinusoid can be associated with a velocity within the binary

system if the phase and amplitude are known. In practice, the emission lines in CVs

are formed from many particles (often in different regions), and thus the profiles are

the sum of many sinusoids which are blended together. As there are many lines and

regions, interpretation is often difficult. Doppler tomography aims to separate these

profiles and and recover a map of the emission regions.

By considering Figure 3.6, each point in the binary system can be represented

in velocity coordinates, (VX , VY ). The radial velocity of any point in the system at

phase φ is given by

VR = γ − VX cos 2πφ+ VY sin 2πφ. (3.16)

The binary can then be represented as an image in velocity space, where the emission

line strength is a function of velocity, I(VX , VY ). The strength of the line profile

between any radial velocities V and V +δV is given by the integration of all emission

sites with appropriate radial velocities, that is

f(V, φ) =

∫ ∞

−∞

∫ ∞

−∞
I(Vx, VY )g(V − VR)δVXδVY , (3.17)

where g(V −VR) is a function representing the line profile at each point of emission. It

includes all effects such as instrumental broadening and is assumed to be identical at

each point. This function is a narrow function and thus the shape of the line profile

between V and V + δV is given by the summation of all points I(VX , VY ) which

satisfy VR ∼ V . The shape of the line profile at a certain radial velocity is therefore

obtained by summing emission from all points with the relevant radial velocity. This
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Figure 3.6: A diagram showing how velocity co-ordinates relate to the binary system.
COM denotes the centre of mass of the binary.

is equivalant to summing along the straight lines defined by Equation 3.16. The line

profile at any given orbital phase can therefore be thought of as a projection of the

velocity space image along the direction determined by the orbital phase. This shown

in Figure 3.7.

3.10.2 Back Projections

If the line profiles (f(V, φ)) are known, as they usually are, it is possible to transform

them to obtain the velocity space image I(VX , VY ) via Fourier transform and back-

projection. The process is described in detail in Marsh (2001) and summarised below.

The Fourier transform of f(V, φ) is multiplied by |s|/G(s), where G(s) is the

Fourier transform of g(V ) over V and s is the frequency in inverse velocity units. The

inverse Fourier transform of this product is then taken to produce filtered, modified

line profiles f̃(V, φ). These modified lines profiles are then back-projected to obtain
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Figure 3.7: A model image and the equivalent profiles formed by projection along
orbital phases 0.25 (right) and 0.5 (bottom). Figure taken from Marsh (2001).

the image I(VX , VY ), which is given by

I(Vx, VY ) =

∫ 0.5

0

f̃(VR = γ − VX cos 2πφ+ VY sin 2πφ, φ)δφ. (3.18)

This means that each point in the image I(VX , VY ) is the result of the integration

along a sinusoidal path defined by the values of VX and VY in the line profile. The

need for the filtering process can be understood by considering the following situation;

a single point of emission in a real image from a point (0, Ky), as shown in the left

panel of Figure 3.8, has a resulting trail consisting of a well defined sinusoid (the

black line in the centre panel of Figure 3.8). Back projecting this sinusoid leads to a

bright peak at (0, Ky), but sinusoidal paths with slightly lower or higher Ky values

(blue line in the centre panel of Figure 3.8) have non-zero line integrals. The bright

peak is therefore a convolution of the true image with a point spread function as

shown in the right panel of Figure 3.8. By filtering, this point spread function can be

deconvolved and the true disc image recovered. In practice, G(s) is Gaussian, and
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Figure 3.8: Left: An emission site in a real image (0, Ky). Centre: The resulting trail
from a point in the emission site (black), together with a sinusoid of similar velocity
(blue). Right: A back projection of the trail without filtering. The image is blurred
due to contamination with similar sinusoids.

so the filtering process often amplifies high frequencies as G(s) drops to zero at large

s, which introduces noise into the image. However, this problem can be overcome

by applying a Gaussian window filter, W (s), which cuts off the higher frequencies

and limits the noise propagation in the final image. However, by applying this filter

the final image obtained is a blurred version of the true image, and thus the filtering

process is a trade-off between resolution and noise.

3.10.3 Interpretation of Doppler Maps

Doppler tomography produces images of emission distribution in velocity space. The

relationship between velocity coordinates and positional coordinates are shown in

Figure 3.9. Figure 3.9 shows that the white dwarf and secondary star are centred on

(0,−KW ) and (0, K2), respectively, while the accretion disc appears as a ring centred

on the white dwarf, but inverted such that the inner disc shows higher velocities.

In practice, this transformation is rarely made outright because such a trans-

formation depends on the system parameters, which are generally not known or

uncertain. In addition, one velocity can correspond to emission at several different

spatial locations.
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Figure 3.9: The translation of velocity coordinates to position coordinates when
interpreting a Doppler map. K2 and Kw represent the radial velocities and centre
of mass of the secondary and primary stars, respectively. Diagram reproduced from
Steeghs (1999).
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3.10.4 Limitation of Doppler Tomography

Doppler tomography relies on five key assumptions. They are;

1. All points are equally visible at all times.

2. The flux from any point is constant.

3. The intrinsic width of the profile from any point is negligible.

4. All vectors rotate with the binary star.

5. All motion is parallel to the orbital plane.

Assumption one is violated by the eclipsing nature of the systems studied in this

thesis. The inner, irradiated face of the secondary stars are self-eclipsed around

phase 0 and again by the white dwarf and disc around phase 0.5. The white dwarf

and accretion disc are likewise eclipsed around phase 0. Assumption two is violated

by flares and flickering, which are especially prevalent in CTCV J1300-3052 (see

Chapters 4, 5 and 6). Assumptions four and five are frequently violated by the

bright spot, where in-falling material collides with the accretion disc and emission

occurs non-parallel to the orbit, and Marsh & Dhillon (1997) showed that assumption

three may not always hold true.

Despite the clear limitations of Doppler tomography, the information obtained

from the Doppler maps can be incredibly useful. It should however, always be treated

with a degree of caution.



Chapter 4

Orbital Ephemerides and Light

Curve Morphology

The contents of this Chapter regarding the targets CTCV 1300, CTCV 2354, SDSS

1152 and SDSS 1501 have been published in the Monthly Notices of the Royal Astro-

nomical Society, 415, 2025-2041 in a manuscript entitled ‘Cataclysmic variables below

the period gap: mass determinations of 14 eclipsing systems’, by Savoury, Littlefair,

Dhillon, Marsh, Gänsicke, Copperwheat, Hickman and Parsons (Savoury et al., 2011).

The analysis of the data and the following text are my own work.

4.1 Introduction

Over the last eight years the ultracam group has used the high-speed, three-colour

camera ultracam (Dhillon et al., 2007) to obtain high time-resolution data for

CVs. The ability to image in three different wave-bands simultaneously allows for

determination of the white dwarf temperature, and thus allows the white dwarf mass-

radius relationships to be corrected for white dwarf temperature as described in

96
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§3.2.1. This makes ultracam the ideal tool to study the complex and highly variable

light curves of CVs.

Using ultracam data, system parameters have been obtained for several short

period systems (Feline et al. 2004a, 2004b; Littlefair et al. 2006a, 2007, 2008),

including the first system in which accretion occurs from a sub-stellar secondary star

(Littlefair et al. 2006b). In order to further enhance this sample of CVs, a number

of eclipsing CVs were identified for which no high-time resolution data was known

(with the exception of SDSS J1006+2337) for investigation with ultracam. In total,

eclipses of twenty CVs were observed, of which seventeen were below the period gap.

CTCV J2354-4700 and CTCV J1300-3052 (CTCV 2354 and CTCV 1300 here-

after) were discovered as part of the Calán-Tololo Survey follow up by Tappert et al.

(2004), who found both systems to be eclipsing with orbital periods of 94.4 and 128.1

minutes, respectively.

SDSS J0750+1411 (SDSS 0751), SDSS J0901+4809 (SDSS 0901), SDSS J0920+0042

(SDSS 0920), SDSS J0924+0801 (SDSS 0924), SDSS J0932+4725 (SDSS 0932), SDSS

J0935+1619 (SDSS 0935), SDSS J1006+2337 (SDSS 1006), SDSS J1152+4749 (SDSS

1152), SDSS J1250+6655 (SDSS 1250), SDSS J1524+2209 (SDSS 1524) and SDSS

J1555-0010 (SDSS 1555) were identified as eclipsing CVs as part of the Sloan Digital

Sky Survey (SDSS) follow up by Szkody et al. (2002, 2003, 2004, 2005, 2007, 2009)

via analysis of their spectra. The spectra of the majority of systems showed strong,

double-peaked emission from their Balmer emission lines, which is characteristic of a

high inclination accreting binary. Follow up work by Southworth et al. (2007, 2010),

Southworth (priv. comm., 2010) and Dillon et al. (2008) confirmed the systems to

be eclipsing, with all but SDSS 0920 and SDSS 1006 below the period gap (see also

Southworth et al., 2009). SDSS 0924 was identified as a possible polar due to the

presence of strong HeII lines, but polarimetric observations revealed no polarisation.

Photometry by Southworth et al. (2010) indicated a lack of accretion disc, supporting
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the possibility of the system being magnetic.

SDSS J1325+2100 (SDSS 1325), CSS080227:112634-100210 (CSS0806277) and

CSS080623:140454-102702 (CSS080623) were identified as eclipsing CVs as part of the

Catalina Real-Time Transient Survey (CRTS) by Drake et al. (2009). Follow up ob-

servations by Southworth (priv. comm., 2010) confirmed SDSS 1325 and CSS080227

to be eclipsing, with orbital periods of 89.8 and 111.5 minutes, respectively. Simi-

lar follow up photometry by Warner & Woudt (2010) confirmed CSS080623 to be

eclipsing with an orbital period of 85.6 minutes.

1RXS J180834.7+101041 (1RXS J1808) was identified as an eclipsing CV by

Denisenko et al. (2008), who noted deep (1.3 mag) eclipses with an orbital period of

100.8 minutes. Denisenko et al. (2008) also noted that this system may be a AM Her

type system due to the large scale variability between eclipses.

PHL 1445 was identified as an eclipsing CV by Wils (2009). Follow up obser-

vations by Wils et al. (2011) confirmed the system to have deep eclipses with an

unusually short orbital period of 76.3 minutes. Wils et al. (2011) also presented fol-

low up observations of a long period system, GALEX J0035+4623 (GAL0035), that

was originally identified as a variable by Martin et al. (2005). This system was also

confirmed to be eclipsing, with an orbital period of 248.1 minutes.

In this Chapter I present orbital ephemerides for each of the systems mentioned

above and briefly discuss the light curve morphology for each system. Systems that

are suitable for light curve modelling are identified.

4.2 Orbital Ephemerides

Orbital ephemerides were determined by fitting a second order polynomial to the

eclipse times presented in Table 2.1a, 2.1b, 2.1c and 2.1d as described in §3.1. In each

case there was no cycle ambiguity. However, a significant O-C offset was observed
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between the data presented in this thesis and the times published by Tappert et al.

(2004) for the targets CTCV 1300 and CTCV 2354. For CTCV 1300, the average

O-C difference is 165.9 seconds, while for CTCV 2354 it is 148.0 seconds. This

is thought to be due to the differing methods of calculating Tmid; Tappert et al.

(2004) calculated Tmid by fitting a parabola to the overall eclipse structure, whereas

in this thesis Tmid is determined from the white dwarf eclipse. The average offsets

were therefore subtracted from the published literature values and the resulting O-C

difference used as the error for that mid eclipse time. In most cases, the mid-eclipse

times were measured using only the g′ band light curve, although for CTCV 1300,

CTCV 2354, SDSS 1152 and SDSS 1501 the mid-eclipse times are an average of the

time obtained using both the g′ and r′ band light curves. The ephemerides found are

shown in Table 4.1.

4.3 Light Curve Morphology and Variations

Figure 4.1a, 4.1b, 4.1c and 4.1d shows the light curves for each system discussed in

§4.1. Where relevant, the stacked (left) and average (right) light curves are shown.

Each light curve is folded on orbital phase in the g′ band. The g′ band was chosen

as they were generally the best quality light curves. In order to carry out the light

curve modelling technique described in §3.2, the light curves are required to show

clear white dwarf and bright spot ingress and egress features. Systems that fulfil this

criteria are identified in the text below.

4.3.1 CTCV J1300-3052

Figure 4.1a shows the two eclipses of CTCV 1300 from the 2007 data set. The

white dwarf ingress and egress features are clearly visible in both eclipses, as are

the bright spot features. These features dominate the light curves, which follow a
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typical dwarf nova eclipse shape (e.g. Wood et al., 1986). The depth of the bright

spot eclipse indicates that the bright spot is the dominant source of light in this

system, while the eclipse of the accretion disc is difficult to discern by eye, indicating

that the accretion disc contributes little light to this system. Closer inspection of

the two eclipses reveals a noticeable difference in the shape of the bright spot ingress

feature. This is caused by heavy pre-eclipse flickering. The flickering is reduced

between phases corresponding to the white dwarf ingress and bright spot egress,

indicating the source of the flickering is the inner disc and/or bright spot. The 2010

observations are discussed in §5.2.2. The clear white dwarf and bright spot features

make this system ideal for modelling.

4.3.2 CTCV J2354-4700

Figure 4.1a shows all of the eclipses from the 2007 data set. The white dwarf ingress

and egress features are clearly visible and along with the accretion disc dominate the

shape of the light curve. A weak bright spot ingress feature is visible at an orbital

phase of 0.995, however the system suffers from heavy flickering, making it difficult to

identify the bright spot egress. The shape of the average light curve indicates possible

egress features at phases 1.060 and 1.080. However, given the scatter there is some

doubt as to whether these represent genuine egress features or merely heavy flickering.

The flickering is reduced between phases corresponding to the white dwarf ingress

and egress, indicating the source of the flickering is the inner disc. The observations

from 2009 and 2010 are discussed in §5.2.2. The clear white dwarf ingress and egress

features and the presence of some bright spot features means that this system is

suitable for attempted modelling.
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4.3.3 SDSS J1152+4049

Figure 4.1a shows all of the eclipses from the 2010 data set. The signal-to-noise ratio

of this data is low in comparison to other systems, but a clear bright spot ingress

feature at phase 0.975 is visible in addition to a clear bright spot egress feature at

phase 1.075. The white dwarf features are clear, and dominate the overall shape

of the light curve. Like CTCV 1300, the eclipse of the accretion disc is difficult to

discern by eye, which again suggests that the accretion disc contributes little light to

this system. The clear white dwarf and bright spot features make this system ideal

for modelling.

4.3.4 CSS080623:140454-102702

Figure 4.1a shows all of the eclipses from the 2010 and 2011 data sets. The eclipse

of CSS080623 follows a typical dwarf novae shape. The white dwarf and bright

spot ingress and egress are clear, and dominate the shape of the light curve. An

orbital hump is clearly visible, whilst there appears to be little contribution from the

accretion disc. The clear white dwarf and bright spot features make this system ideal

for modelling.

4.3.5 SDSS J0901+4809

Figure 4.1a shows the eclipses from the 2012 data set. The average light curve

of SDSS 0901 is similar in shape to CTCV 1300 and SDSS 1152, and follows the

‘typical’ dwarf novae eclipse shape. The white dwarf and bright spot ingress and

egress features are clearly visible, as is an orbital hump. These features dominate the

shape of the light curve. The 2006 and 2010 eclipses (not shown) are very different;

they show clear white dwarf ingress and egress features, and a clear orbital hump,

but lack any obvious bright spot ingress or egress features. The clear white dwarf and
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bright spot features visible in the 2012 data make this system ideal for modelling.

4.3.6 PHL 1445

Figure 4.1b shows the eclipses from the 2012 data set. The white dwarf ingress and

egress features are clearly visible, as is the bright spot ingress. The bright spot egress

is much more difficult to identify in the individual light curves, although the average

light curve indicates a possible egress feature around phase 1.070. The individual

light curves show heavy flickering that is reduced between phases corresponding to

the white dwarf ingress and egress, which indicates the source of the flickering is the

inner disc. This flickering is unusual, and unexpected given the very short orbital

period of the system. There is a considerable drop in brightness outside of eclipse

between the observations taken on the 14th January 2012 and those taken on the

15th and 16th of January 2012 that can be attributed to changes in the accretion disc.

This rapid change in disc brightness over such short timescales suggests the accretion

disc is highly unstable. The eclipse dated November 2011 (not shown) was found to

be in outburst, further highlighting the active nature of this system. Although the

flickering of individual eclipses is high, the clear features present in the average light

curve means this system is suitable for modelling.

4.3.7 SDSS J1325+2100

Figure 4.1b shows the eclipses from the 2011 and 2012 data sets. The shape of the

eclipse is similar to that of SDSS 1152. The white dwarf and bright spot features

are clearly visible, although the signal-to-noise of the data is poor in comparison to

other systems. The out of eclipse brightness of the 2012 data set is considerably

fainter than the 2011 data set, and the bright spot ingress is less well defined. This is

likely to be the result of changes in the accretion disc. Although the average eclipse
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looks promising, the low signal-to-noise means that it is not possible to constrain a

full MCMC model using these light curves. Further observations of this system are

required for accurate and precise mass determinations to be made.

4.3.8 SDSS J0750+1411

Figure 4.1b shows all of the eclipses from the 2012 data set. The light curves are

dominated by heavy flickering. The white dwarf ingress and egress features are clearly

visible, as is the accretion disc. The bright spot features appear lost in the flickering

of the individual light curves, although the bright spot ingress feature is visible in

the average light curve around phase 0.975. The bright spot egress feature is not

obvious, and so these light curve are not suitable for modelling. Further observations

of this system are required.

4.3.9 SDSS J1524+2209

Figure 4.1b shows all of the eclipses from the 2011 data set. The average light curve

of SDSS 1524 is similar in shape to CTCV 2354. The eclipse shows clear white dwarf

ingress and egress features in addition to a clear bright spot egress feature. The

bright spot ingress feature is much more difficult to resolve. The asymmetric shape

of the eclipse bottom indicates the bright spot ingress feature is present between

phase 0.975 and 0.990. The weakness of the bright spot features and low signal-to-

noise mean that these light curves are not suitable for modelling at present. Further

observations of this system are required.

4.3.10 SDSS J1250+6655

Figure 4.1b shows all of the eclipses from the 2006 and 2010 data sets. This system is

highly variable and suffers from heavy flickering. There are clear white dwarf ingress
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and egress features and in some individual light curves what appears to be bright

spot ingress and egress features. However, when averaged together, these features

disappear, indicating they are artifacts of flickering. As a result of the uncertainty

in bright spot position, this system is not suitable for modelling at present. Further

monitoring is desirable.

4.3.11 SDSS J1555-0010

Figure 4.1c shows all of the eclipses from the 2007, 2009, 2010 and 2011 data sets.

Eclipse cycle 162 has been omitted from the plot due to low signal-to-noise, caused

by a combination of poor seeing and cloud. The eclipse of SDSS 1555 shows a

distinct ‘U’−shape that is dominated by the white dwarf ingress and egress features.

There does not appear to be any obvious bright spot ingress or egress features, and

so these light curves are not suitable for modelling. The white dwarf ingress and

egress features appear short, although are of similar duration to systems containing

high mass white dwarfs (e.g. CTCV 2354). These light curves are not suitable for

modelling, however further monitoring is desirable.

4.3.12 CSS080227:112634-100210

Figure 4.1c shows all of the eclipses from the 2010 and 2011 data sets. The light

curves are highly variable and are dominated by flickering and the accretion disc.

The white dwarf ingress and egress features are clear, but there are no obvious bright

spot features. These light curves are not suitable for modelling, however further

monitoring is desirable.
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4.3.13 1RXS J1808+1010

Figure 4.1c shows all of the eclipses from the 2010 data set. The light curve of J1808 is

dominated by heavy flickering and the accretion disc. The object varies in brightness

by ∼0.6 magnitudes between observations, while the depth of the eclipse also varies.

There are no obvious white dwarf ingress or egress features, which combined with the

shape and depth of the eclipse, indicates that this system is only partially eclipsing.

The high variability supports the observations by Denisenko et al. (2008) that is

system could be magnetic. Recent eclipse studies by Southworth & Copperwheat

(2011) and Yakin et al. (2011) also support a partially eclipsing system, indicating

an inclination of ∼77-78◦. This system is not suitable for modelling.

4.3.14 SDSS J0920+0042

Figure 4.1c shows all of the eclipses from the 2011 data set. The overall shape

of the light curve is dominated by the accretion disc, although comparison of the

photometry presented in this thesis to that of Szkody et al. (2003) does not indicate

that the system was in outburst at the time of observation. There are no obvious

white dwarf or bright features and so these light curves are not suitable for modelling.

4.3.15 GAL0035

Figure 4.1d shows the eclipse of the long period system GAL0035 dated 14th January

2012 (cycle 26920). The white dwarf ingress and egress features are clearly visible,

although the ingress feature appears blended with the bright spot ingress. The bright

spot egress feature is questionable, with possible features around 1.04 and 1.08. The

eclipse observed on the 15th January 2012 (cycle 26980, not shown) was found to be in

outburst, showing a ‘V’−shaped eclipse approximately one magnitude brighter than

cycle 26920. This indicates that cycle 26920 may have been on the rise to outburst



4.3. Light Curve Morphology and Variations 107

at the time of observation. This eclipse is not suitable for modelling, however further

monitoring, with better phase coverage, is desirable.

4.3.16 SDSS J1006+2337

Figure 4.1d shows the single eclipse of the long period system SDSS 1006. The

light curve of SDSS 1006 is similar in shape to CTCV 1300, however the white

dwarf ingress and bright spot ingress features are unresolved. This eclipse is very

different to that of Southworth et al. (2009), who observed a clear bright spot ingress

but had poor phase coverage of the bright spot egress. The eclipse in Figure 4.1d

eclipse has a ‘u’−shaped bottom, which is again different from Southworth et al.

(2009). Comparison of photometry to that of Southworth et al. (2009) does not

suggest that the object was in outburst or the rise/decline from outburst at the

time of observation. This single eclipse is not suitable for modelling, however further

monitoring is desirable.

4.3.17 SDSS J0924+0801

Figure 4.1d shows the single eclipse of SDSS 0924. The light curve shows clear

white dwarf ingress and egress features but no evidence of the type of bright spot

ingress or egress features seen previously. A flare or jump in the light curve is visible

immediately after the white dwarf egress, which could be attributed to the bright spot

egress. Like Southworth et al. (2010), there are no obvious accretion disc features

visible. Southworth et al. (2010) suggest that the object might be a polar, however

the signal-to-noise of the data is too low to be conclusive. This light curve is not

suitable for modelling, however further monitoring is desirable.
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4.3.18 SDSS J0932+4725

Figure 4.1d shows the single eclipse of SDSS 0932. There is clear contribution from

the accretion disc, and what appears to be a clear white dwarf ingress. The system

shows a very gradual increase in light, characteristic of an accretion disc coming out

of eclipse. The overall shape of the light curve suggests a highly asymmetric disc.

Homer et al. (2006) suggests that this system may be an intermediate polar, but

x-ray spectra is inconclusive. This system is not suitable for modelling, but further

monitoring is desirable.

4.3.19 SDSS J0935+1619

Figure 4.1d shows the single eclipse of SDSS 0935. There appears to be a faint ingress

and egress feature followed immediately by a large rise, similar in shape to an orbital

hump. A similar feature appears present in three of the five eclipses presented by

Southworth (priv. comm., 2010), but the feature is much smaller in comparison to

the eclipse. A similar feature, but not as smooth as the one observed here, is also

visible in the light curves of HU Aqr (e.g. Schwarz et al., 2009), suggesting that

this object may be a polar. Szkody et al. (2009) noted broad, but weak emission

lines with strong continuum, suggesting the system may be an old nova. The eclipse

feature visible in Figure 4.1d is shallow, indicating that the eclipse is only partial.

This system is not suitable for modelling.

4.4 Systems for Modelling

Based on the light curve morphologies discussed above, CTCV 1300, CTCV 2354,

SDSS 1152, CSS080623, SDSS 0901 and PHL 1445 have been identified as suitable

for modelling. These systems all show clear white dwarf and bright spot ingress and
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Figure 4.1a: The phased-folded, g′ band light curves of 20 eclipsing CVs.
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Figure 4.1b: continued
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Figure 4.1c: continued
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Figure 4.1d: continued
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egress features in their average light curves.

Due to the heavy flickering in CTCV 1300, each night was fit individually, rather

than a single fit to a phase-folded average. This was in order to provide a more

robust estimation of the uncertainties. In general, the errors induced by flickering

dominate over any photometric errors. Ideally, the same procedure would have been

carried out with CTCV 2354, however the weak bright spot features and poor phase

coverage of individual observations meant this was not possible.

Not all of the eclipses listed in Table 2.1a and 2.1b were used for determining

system parameters. This is because some of the eclipses have poor signal-to-noise, or

lack clear bright spot features. However, the eclipses not used for determining system

parameters were still used to refine the orbital ephemerides presented in Table 4.1.

These eclipses include CTCV 2354 cycles 11197, 11198, 11366, 11396, 11457, 11472,

SDSS 1501 cycles 24718, 24719, SDSS 0901 cycles -13, 1, 2, 17964 and PHL 1445

cycles 11288 and 12552. CTCV 2354 cycle numbers 16156, 16676 and CTCV 1300

cycle number 12888 are analysed separately at the end of Chapter 5 because the

shape of the eclipse changed significantly in comparison to the 2007 data.

While implementing the MCMC code described in §3.2, Stuart Littlefair discov-
ered a bug in the original lfit code. The re-binning code used to average several light

curves together mistreated the widths of the bins, which in turn affected the trape-

zoidal integration of the model over these bins. The direct result was that in cases

of heavy binning, such as systems with heavy flickering or where several light curves

had been averaged together, the white dwarf radius, Rw/a, was underestimated. The

exact amount depended on the level of binning used. This consequently resulted in

an overestimate of the white dwarf mass. Because the mass of the secondary star,

Mr, is related to the white dwarf mass Mw by Mr = qMw, this also resulted in an

overestimate of the secondary star mass. This problem affects all of the eclipsing-CV

papers published by the ultracam group (Feline et al. 2004a, 2004b; Littlefair et
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Figure 4.2: The 2004, g′ band light curve of SDSS 1501.

al. 2006a, 2006b, 2007, 2008) by differing amounts. In this thesis, I therefore perform

a re-analysis of the following systems: OU Vir, DV UMa, XZ Eri, SDSS J1702+3229

(SDSS 1702), SDSS J1035+0551 (SDSS 1035), SDSS J1507+5230 (SDSS 1507), SDSS

J0903+3300 (SDSS 0903), SDSS J1227+5139 (SDSS 1227), SDSS J1433+1011 (SDSS

1433), SDSS J1502+3334 (SDSS 1502) and SDSS J1501+5501 (SDSS 1501).

The SDSS 1501 data listed in Littlefair et al. (2008) was not used in the new

analysis. Instead, a single eclipse observed in 2004 (see Table 2.1a) was modelled.

This single light curve is shown in Figure 4.2. This 2004 data was not fit by Littlefair

et al. (2008) because the simplex methods used gave a seemingly good fit to the

2006 data. Despite appearing to have converged to a good fit, the MCMC analysis

revealed that the 2006 data does not constrain the model, most likely due to the very

weak bright spot features. The 2004 data shows much clearer and well-defined bright

spot features than the 2006 data (see Fig. 1 of Littlefair et al. 2008), and so despite

only having one eclipse (and thus lower signal-to-noise) it is favoured for the fitting

process.



Chapter 5

Mass Determinations of 17

Eclipsing Systems

The contents of this Chapter have been published in the Monthly Notices of the Royal

Astronomical Society, 415, 2025-2041 in a manuscript entitled Cataclysmic variables

below the period gap: mass determinations of 14 eclipsing systems, by Savoury, Little-

fair, Dhillon, Marsh, Gänsicke, Copperwheat, Hickman and Parsons (Savoury et al.,

2011). The reduction and analysis of the data and the following text are my own

work unless stated otherwise.

5.1 Introduction

In this Chapter I present ultracam light curves of CTCV 1300 (u′g′r′i′), CTCV

2354 (u′g′r′), SDSS 1152 (u′g′r′), CSS080623 (u′g′r′), SDSS 0901 (u′g′r′) and PHL

1445 (u′g′r′), and derive the system parameters via light curve modelling as described

in Chapter 3. These targets are described in Chapter 4. In addition, I present an

updated analysis of all eclipsing systems previously published by the ultracam

115
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group: OU Vir (Feline et al. 2004a), XZ Eri and DV UMa (Feline et al. 2004b),

SDSS J1702+3229 (Littlefair et al. 2006a), SDSS J1035+0551 (Littlefair et al. 2006b,

2008), SDSS J150722+523039 (Littlefair et al., 2007, 2008), SDSS J0903+3300, SDSS

J1227+5139, SDSS J1433+1011, SDSS J1501+5501 and SDSS J1502+3334 (Littlefair

et al., 2008).

5.2 Results

5.2.1 System Parameters

For each system an MCMC analysis was performed on each phase-folded u′, g′, r′ or

i′ light curve from an arbitrary starting position. Exceptions include CTCV 1300,

where each night of observations were fit individually, and SDSS 1152, SDSS 1501,

PHL 1445, for which fits were only calculated in the g′ and r′ bands due to u′-band

data of insufficient quality to constrain the model. Bad data points, areas of the

light curve with poor phase coverage or heavy flickering and parts of the light curve

that the model is unable to fit, possibly due some additional physics not included

in the model (e.g. accretion disc opacity), were excluded from the fitting process

(shown as red data points in Figure 5.1) in order to optimise the fits around the

white dwarft and bright spot ingress and egress. In most cases, phases 0.95 − 1.10

are fit without masking. Where no u′ band MCMC fit could be obtained, the g′

band model was fit and scaled to the u′ band light curves without χ2 optimisation.

This allows for estimation of the white dwarf flux in the u′ band, and determination

of the white dwarf temperature. The white dwarf temperature (Tw) was estimated

using an iterative process. A first estimate of Tw was derived from the white dwarf

mass and radius found from a first iteration of the light curve modelling, assuming a

white dwarf temperature of 10,000K and a limb-darkening coefficient of 0.345. The
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white dwarf colours were then fit to the white dwarf models of Bergeron et al. (1995)

(see §3.2.1). The value of log g implied from the white dwarf mass and radius was

used to place an additional constraint on the fit, and thus the derived Tw. However,

allowing both log g and Tw to vary whilst fitting the white dwarf colours was not

found to have a significant effect; temperatures derived with the constraint were

within 1000K (and so within errors) of those derived without. The data were not

good enough to determine the white dwarf limb-darkening coefficient, Uw, accurately

and so the procedure outlined in §3.2.1 was repeated in order to find an appropriate

limb-darkening coefficient. Littlefair et al. (2007) show that the typical uncertainties

in Uw using this technique are ∼ 5 per cent, which leads to uncertainties in Rw/a of

∼ 1 per cent. These errors have negligible impact on the final system parameters.

Once an estimate of Uw and Tw were made, the fitting process was repeated using

these values of Uw and Tw. A final estimate of Tw was derived from the final iteration

of the fits. In general, the fits to each system are in excellent agreement with the light

curves, as shown in Figures 5.1a, 5.1b, 5.1c and 5.1d. The model parameters found

via the fitting process are shown in Appendix A. Overall, these model parameters

are found to be in good agreement for each system across each band fit.

The PDFs obtained from each band fit were combined into the total PDF for each

system, as shown in Figures 5.2a and 5.2b. Most systems have system parameters

with a Gaussian distribution with very little asymmetry. The adopted value for a

given parameter is taken from the peak of the PDF. Upper and lower error bounds

were derived from the 67% confidence levels. For simplicity, and because the dis-

tributions are mostly symmetrical, an average is taken of the upper and lower error

bounds. The final adopted system parameters, derived from the fits as described

in §3.4, are shown in Tables 5.1a and 5.1b. Figures 5.6 and 5.7 show the true 67%

confidence levels for the white dwarf mass and secondary star mass, respectively, for

each system.



5.2. Results 118

Figure 5.1a: The phased-folded u′g′r′ or u′g′i′ light curves of the CVs listed in Table
5.1a and 5.1b, fit using the model outlined in §3.2. The data (black) are shown with
the fit (red) overlaid and the residuals plotted below (black). Below are the separate
light curves of the white dwarf (dark blue), bright spot (light blue), accretion disc
(green) and the secondary star (purple). Data points omitted from the fit are shown
in red. χ2 values for each fit, together with the number of degrees of freedom (DOF)
are also shown.
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Figure 5.1b: continued
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Figure 5.1c: continued
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Figure 5.1d: continued

With the exception of CTCV 2354, all of the systems analysed in this study lie

near, or within, the range of white dwarf colours allowed by the atmosphere models

of Bergeron et al. (1995), as shown in Figure 5.3. However, the systems do not

always lie near the track for the appropriate mass and radius of the white dwarf.

Littlefair et al. (2008) compare the temperatures derived using light curve fits to

those found using SDSS spectra and GALEX (Galaxy Evolution Explorer) fluxes for

a small number of systems and conclude their white dwarf temperatures are accurate

to ∼1000K. The systems examined by Littlefair et al. (2008) are all found to lie

close to the Bergeron tracks; it is likely that systems that lie far from the tracks are

less accurate. The white dwarf temperatures in this thesis have larger uncertainties

than those of Littlefair et al. (2008). This is because the temperatures in Table 5.1a

and 5.1b take into account the uncertainty in white dwarf mass when comparing the

white dwarf fluxes to the models of Bergeron et al. (1995).
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Figure 5.2a: The normalised probability density functions for each system, derived
using the MCMC chains, orbital period and the mass–radius relationships of Wood
(1995), Panei et al. (2000) and Hamada & Salpeter (1961), at the appropriate white
dwarf temperature. The red curve represents the r′ or i′ band fit, the green represents
the g′ band, and blue curve (where present) represents the u′ band. The black
represents the total, combined PDF. Shown are the PDFs for mass ratio q, white
dwarf radius Rw/R�, secondary star mass M2/M�, and inclination i◦.
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Figure 5.2b: continued



5.2. Results 126

Figure 5.3: The white dwarf colours derived from the model fitting, together with
the white dwarf models of Bergeron et al. (1995). From top to bottom, each curve
represents log g = 9.0, 8.5, 8.0, 7.5 and 7.0 respectively. The measured white dwarf
colours are shown here in red, and are used to derive the white dwarf temperature,
which in turn is used to correct the white dwarf mass-radius relationships used later
to obtain the final system parameters.
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It is possible that the white dwarf colours obtained from the modelling process

are affected by contamination from the accretion disc, bright spot, or an unmodelled

light source such as a boundary layer. If the white dwarf colours are incorrect, then

the derived white dwarf temperatures will be affected. The affect on the final system

parameters can be understood by considering the following.

1. Changing the white dwarf temperature will alter Uw.

2. The model fitting measures Rw/a and uses a mass-radius relationship to infer

Mw, which is then used to find the mass of the secondary star. However, Uw

and Rw are partially degenerate, so Uw therefore affects Rw and Mw.

3. Mw is affected by temperature changes because the white dwarf mass-radius

relationship is temperature dependent.

4. The white dwarf temperature also affects the luminosity of the system, and

hence distance estimate.

It is therefore important to quantify the effect that incorrect white dwarf temper-

atures may have on distance estimates and the final derived system parameters. To

do this, the white dwarf temperature of the best quality, white-dwarf dominated sys-

tems were altered and by 2000K and the fitting procedure repeated. For lower quality

data, the random errors dominate over any systematic errors, and thus changes to

the best quality data represent a worst case scenario. It was found that changing

the white dwarf temperature by 2000K changed Rw/a by less than 1σ. The white

dwarf distance estimates changed by 10-20pc. Therefore, any error in white dwarf

temperature that may occur does not affect the final system parameters by a signif-

icant amount. However, a caveat to this is that the modelling procedure does not

include treatment of any boundary layer around the white dwarf, and assumes all of
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the white dwarf’s surface is visible. Either effect could lead to systematic uncertainty

in the white dwarf radii (Wood et al., 1986).

5.2.2 Notes on Individual Systems

CTCV 1300

As noted in Chapter 4, the two eclipses of CTCV 1300 were modelled individually due

to the heavy pre-eclipse flickering present in each light curve. The u′g′r′ eclipses from

the night of 2007 June 10 gave consistent results, as did the u′g′i′ eclipses from the

night of 2007 June 13. However, results from the individual nights were not consistent

with each other and thus there exists two distinct solutions that are the result of heavy

pre-eclipse flickering altering the shape of the bright spot ingress feature. This in turn

gives two very different values for the mass ratio, q. Encouragingly, the white dwarf

mass and radii are consistent between nights. To derive the final system parameters,

the PDFs were combined as outlined in §5.2.1, and then an average was taken of

the two solutions. The error is taken as the standard deviation between the two

solutions. Both solutions are shown in Appendix B.

Figure 5.4 shows the g′-band eclipse from June 2010 together with a modified

version of the model obtained from the 2007 dataset. This new model was found by

starting from an average of the two 2007 fits and using a downhill simplex algorithm

to vary all parameters bar q, Δφ, Rw/a and Uw. These parameters should not change

with time, and so the simplex fit will confirm if the bright spot positions and white

dwarf dwarf radius are correct, and thus if the system parameters are reliable. A

simplex algorithm was used for two reasons; firstly, because only a consistency check

was required, and no system parameters were extracted from the fitting process, a

full MCMC analysis was not required; secondly, the bright spot flux appears to have

reduced significantly between data sets, and the strength of the bright spot ingress
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Figure 5.4: The June 2010 g′ band eclipse of CTCV 1300, together with a modified
model found using the 2007 data. Starting from an average of the two 2007 models,
a downhill simplex fit was performed varying all parameters bar q, Δφ, Rw/a and
Uw.

feature means that a full fit could not be constrained using MCMC. The model

confirms the bright spot flux has decreased considerably, although an orbital hump is

still visible. The white dwarf flux remains almost unchanged, although the accretion

disc appears brighter. The fit to the data is good, indicating that the models derived

from the 2007 data (and used to derive the system parameters) are reliable.

CTCV 2354

In Chapter 4 it was noted that the shape of the light curve of CTCV 2354 indicated

possible bright spot egress features around phases 1.060 and 1.080. Figure 5.1a

shows that the model has fit the bright spot egress feature at phase 1.080. Given

the strength and shape of the bright spot features and general scatter present in the

light curve there is some uncertainty over whether the bright spot positions have

been correctly identified by the model, and thus there is some element of doubt as to

the value obtained for the mass ratio and thus the secondary star mass. It is at this

point the readers is referred to the 2010 data, shown in Figure 5.5. The eclipse dated

2010 May 3 (centre panel) shows clear bright spot ingress and egress features, with

a clear orbital hump visible from phases 0.70–0.95. The system is much brighter in
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Figure 5.5: The g′ band observations of CTCV 2354 from 2009 (left), 2010 May 3
(centre) and 2010 June 6 (right), fit with a modified version of the model obtained
from the 2007 data as described in §5.2.2.

this state than the 2007 data previously modelled, in part due to a dramatic increase

in bright spot flux. As with CTCV 1300 a downhill simplex method was used to vary

all parameters bar q, Δφ, Rw/a and Uw. The fit to the eclipse of May 3 is especially

pleasing, as its excellent agreement with the light curve confirms that the 2007 model

correctly identified the bright spot egress feature and thus the mass ratio obtained

is reliable.

Figure 5.5 also shows a single eclipse observed just one month later (June 2010,

right panel), and six eclipses averaged together from June 2009 (left panel). Both of

these datasets are fit with a downhill simplex model as above. The June 2009 and

June 2010 datasets are in stark contrast to the May 2010 data, with the bright spot

features appearing extremely faint (2009), or seemingly non-existent (June 2010).

The accretion disc flux in the June 2010 data appears to have increased significantly,

giving rise to a distinct “u” shape. The rapid change in bright spot and accretion

disc light curves over such short (1 month - 1 year) time scales suggests that the disc

is highly unstable.

DV UMa

The secondary star mass derived for DV UMa has increased by 6.1σ (ΔM=0.039M�)

from that published by Feline et al. (2004b). Close inspection of the original fit

reveals that the bright spot features were fit poorly by the old bright spot model.
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This arose because the old bright spot model could not describe the complex bright

spot profile present and an inaccurate value of the mass ratio was found as a result.

The new bright spot model is much better in this respect, and is able to take into

account a wider variety of geometric effects and orientations. Given that the white

dwarf radius is consistent with that of Feline et al. (2004b), this seems the most

likely cause of such a large change. It is worth noting that the new secondary star

masses for both DV UMa and XZ Eri, are both consistent with the masses obtained

by Feline et al. (2004b) using the derivative method, which, unlike the parameterised

model, does not make any attempt to recreate the bright spot eclipse profile (e.g.

Wood et al. 1986; Horne et al. 1994; Feline et al. 2004a; Feline et al. 2004b).

SDSS 1502

The new fits to SDSS 1502 decrease the secondary star mass by 2.9σ (ΔM2 =

0.012M�) from that of Littlefair et al. (2008). The mass ratio and inclination are

consistent with those of Littlefair et al. (2008), however the white dwarf radius, Rw,

has increased by 13 percent (3.4σ). It is thought that the primary reason for this

change was that the original fit was heavily binned, and thus more susceptible to the

bug outlined in §4.4.

SDSS 1501

The most important change of all of the re-modelled systems is for that of SDSS 1501.

Whilst the secondary star mass has only increased by 1.9σ from that of Littlefair et al.

(2008), it should be noted that the uncertainties are large (σM2 = 0.010M�) and

the mass difference is large enough to take this system from being a post-period-

bounce system, to a pre-period-bounce system. Although the errors do not formally

rule out the possibility of SDSS 1501 being post-period-bounce, the secondary star’s

position with respect to the evolutionary tracks shown in Figure 5.7 strongly favours
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that of a pre-period-bounce system. Such a change arises from a difference in bright

spot positions between the model presented in this thesis and that of Littlefair et al.

(2008), which in turn affects the mass ratio obtained. The data used by Littlefair

et al. (2008) shows a very weak bright spot ingress feature. With the improvements

made to the modelling process resulting from the introduction of MCMC, it is clear

that the 2006 data used by Littlefair et al. (2008) does not constrain the mass ratio,

q, tightly enough. In contrast, the 2004 data shows much clearer bright spot features,

and is therefore favoured over the 2006 data as discussed in §4.4.

5.3 Discussion

5.3.1 White Dwarf Masses

Population studies by Willems et al. (2005) predict that between 40 and 80 percent

of CVs are born with He-core white dwarfs (Mw � 0.50M�) and therefore He-core

white dwarfs (He-WDs) are expected to be common amongst CV primaries. It is

surprising then that out of the sample of 17 systems presented in §5.2.1, there no

He-WDs. Of all of the systems, SDSS 1152 is found to have to the lowest white dwarf

mass with Mw = 0.560 ± 0.028. The mass distribution of Kepler et al. (2007) for

SDSS white dwarfs suggests He-WDs have a typical mass of ∼0.38M�. The most

massive He-WDs may form from single RGB stars, which due to extreme mass loss

are able to avoid the Helium flash; D’Cruz et al. (1996) consider models with a range

of mass loss rates on the RGB and manage to produce He-WDs with masses up to

∼0.48M�. It is likely that this represents an upper limit to the mass of He-WDs and

hence SDSS 1152 is still too massive to be a viable candidate for a He-core white

dwarf.

The white dwarf masses presented in thesis are found to not only be massive
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to be He-WDs, but are also well in excess of the average mass for single DA white

dwarfs. Using the same method as Knigge (2006), the average white dwarf mass of

the entire sample of systems in §5.2.1 is found to be Mw = 0.81 ± 0.03M�, with

an intrinsic scatter of 0.12M�. In comparison, Liebert et al. (2005) find the mean

mass of DA white dwarfs to be Mw ∼0.603 M�, while Kepler et al. (2007) find a

mean mass of Mw = 0.593 ± 0.016M�. This study thus supports previous findings

(e.g. Warner, 1973, 1976; Ritter, 1976, 1985; Robinson, 1976; Smith & Dhillon, 1998;

Knigge, 2006) that white dwarfs in CVs are on average higher in mass than single

field stars. Like Littlefair et al. (2008), the white dwarf masses derived here are

compared to the average mass of Mw = 0.73±0.05M� for white dwarfs in CVs below

the period gap (Knigge, 2006). It was found the white dwarf masses in this study

are generally higher. This is especially so for systems Porb ≤ 95 mins, where a mean

white dwarf mass of Mw = 0.82 ± 0.02M� was found, with an intrinsic scatter of

0.07M�. Some of the white dwarf masses are revised, and have accordingly moved

downwards in mass compared to Littlefair et al. (2008), but as Figure 5.6 shows,

for Porb ≤ 95 mins, 9 out of 11 systems are more massive than the average found

by Knigge (2006), with SDSS 1502 and CSS080623 the only exceptions. On the

same plot, the dispersion of masses as found by Knigge (2006) and the mean mass

of single SDSS white dwarfs found by Kepler et al. (2007) are shown. It should be

noted that the Knigge (2006) sample contains three systems also included in this

study: OU Vir, DV UMa and XZ Eri, using the old mass determinations of Feline

et al. (2004a, 2004b). Most of the new white dwarf masses are within the dispersion

found, indicating that no individual white dwarf mass is unusual. However 9 out

of 11 systems above average does seem anomalously high, considering that if the

white dwarf masses are modelled as a binomial distribution, the probability of such

an occurrence is less than 3.5 percent (independent of the actual mean or variance).

Such difference between this sample and that of Knigge (2006) is concerning, and it
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is therefore desirable to consider the selection effects, considering the majority of the

short period systems are SDSS objects (Szkody et al., 2004, 2005, 2006, 2007).

The majority of SDSS CVs found are generally rejected quasar candidates with

a limiting magnitude of g′ = 19 − 20, and are initially selected for follow up on the

basis of u′-g′ colour cuts (see Gänsicke et al. (2009) for a more in depth description).

Littlefair et al. (2008) show that systems with Mw ≥ 0.50M� are blue enough to pass

the SDSS colour cuts and conclude that selection effects such as these are unlikely

to explain the high mass bias of our white dwarf sample. However, the majority of

the systems studied in this thesis are close (g′∼ 17.5 − 19.5) to the g′ = 19 limit of

the SDSS survey. This raises the possibility that the SDSS sample only finds the

brightest of the short period CVs. Ritter & Burkert (1986) have shown that CVs

with high mass white dwarfs are brighter than their low mass counterparts. This

suggests there maybe some bias towards high mass dwarfs. However, this conclusion

is not appropriate to the systems studied here: Ritter & Burkert (1986) only consider

the effects of accretion luminosity whereas in most of our systems the white dwarf

considerably outshines the accretion disc.

Zorotovic et al. (2011) consider selection effects in white dwarf dominated SDSS

systems with a variety of different mass transfer rates and conclude there is actually

bias against high mass white dwarfs. They find a 0.90M� white dwarf is approxi-

mately 0.15 magnitudes fainter than a 0.75M� white dwarf, which corresponds to

a decreased detection efficiency of ∼ 20%. This suggests that the finding of high

mass white dwarfs at short orbital periods within the sample of objects studied here

may not be due to selection effects, and could in fact be a true representation of

the intrinsic mass distribution of CVs. However, this analysis only considers white

dwarf luminosity; in some of the systems studied here the bright spot features are

prominent, and contribute significantly to the overall flux of the system. It remains

possible that the finding of very high white dwarf masses for short period CVs is due
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to selection effects. However, a full and thorough quantification of any bias would

require detailed calculations of the luminosity of white-dwarf dominated systems (in-

cluding bright spot emission), plus an investigation of the selection effects in the

SDSS sample. Such an analysis is beyond the scope of this study.

The results presented in this thesis have important consequences for the modelling

of nova outbursts and their impact on the long-term evolution on CVs. Typical

calculations show that the mass of the white dwarf decreases by between 1 and 5

percent per 1000 nova cycles (e.g. Yaron et al., 2005; Epelstain et al., 2007). The

dominance of high-mass white dwarfs in the sample of short period systems presented

in this Chapter suggests that any white dwarf erosion due to nova explosions must

be minimal, or that not all of the accreted matter is ejected during nova ignition,

resulting in the white dwarf mass increasing over time. This could, in principle

enable the white dwarfs in cataclysmic variables to grow in mass until they reach the

Chandrasekhar limit.

5.3.2 Period Bounce

Population synthesis models for cataclysmic variables (e.g. Kolb, 1993; Willems et al.,

2005) all predict that large numbers of the CV population (∼15 - 70 percent) have

evolved past the period minimum. This has always been in stark contrast to obser-

vations, possibly in part due to selection effects (e.g. Littlefair et al., 2003).

Littlefair et al. (2006b, 2007, 2008) identified four systems (SDSS 1035, SDSS

1507, SDSS 1433, SDSS 1501) with secondary stars below the sub-stellar limit, three

of which are likely to be post-period-bounce CVs (SDSS 1035, SDSS 1501 and SDSS

1433). The subsequent re-analysis gives three systems (SDSS 1035, SDSS 1507, SDSS

1433) with secondaries below the sub-stellar limit, two of which (for reasons outlined

below) are thought to be post-period-bounce CVs (SDSS 1035 and SDSS 1433).

SDSS 1501, which no longer features as a post-period-bounce system, is discussed in
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Figure 5.6: The white dwarf mass as a function of orbital period. The mean white
dwarf mass for systems below the period gap, as found by Knigge (2006) is shown
with a solid line, along with the associated intrinsic scatter (dashed line). The mean
white dwarf mass in single stars as found by Kepler et al. (2007) is shown by a
dotted line. The objects marked with green are systems not included in Savoury
et al. (2011).
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greater detail in §5.2.2.
Sirotkin & Kim (2010) claim that SDSS 1433 cannot be considered a post-period-

bounce object because the mass transfer rates and secondary star temperatures im-

plied are too high. The mass transfer rate was found using an estimate of the white

dwarf temperature (Townsley & Gänsicke, 2009), while the secondary star temper-

ature was inferred using a semi-empirical relationship that is also dependent on the

white dwarf temperature. The white dwarf temperature used by Sirotkin & Kim

(2010) was that derived by Littlefair et al. (2008) from model fitting. In this case,

using Ṁ and T2 is an unreliable test of the evolutionary status of CVs secondary

stars, because accurate determinations of the white dwarf temperature are difficult

to obtain. Of all the system parameters derived through model fitting, the white

dwarf temperatures are the least well constrained, and do not take into account sys-

tematic errors. Because the white dwarf temperature is found using the flux from

just three colours, and the model does not include all possible sources of luminosity

(e.g. a boundary layer), there is a good chance that the white dwarf temperatures

are affected by systematic errors at some level, as discussed in §5.2.1. Instead, the

secondary stars are favoured as indicators of evolutionary status (see Chapter 1).

If the angular momentum loss rate is similar for systems with identical system

parameters, then all CVs are expected to follow very similar evolutionary tracks

with a single locus in the mass-period relationship (and by analogy, mass-radius

relationship) for CV secondary stars, as shown in Figure 5.7. The empirical donor star

mass-radius relationship derived by Knigge (2006) shows that a single evolutionary

track does very well at describing the observed M2 − Porb relationship, although the

shape of that relationship is loosly constrained at low masses. A single evolutionary

path also explains the presence of the “period spike”, a long sought after feature

in the orbital period distribution recently identified by Gänsicke et al. (2009). It

is therefore expected that there exists a unique secondary star mass corresponding
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to the minimum orbital period, below which an object becomes a period-bouncer.

The exact mass at which this occurs is very uncertain, and does not necessarily

correspond to the sub-stellar limit (e.g. Patterson, 2011). From the empirical work

of Knigge (2006), the best estimate for Mbounce is M2 = 0.063 ± 0.009M�. Three of

the systems studied here (SDSS 1035, SDSS 1433 and SDSS 1507) fall well below

this value and PHL 1445 is found to be consistent with this mass. PHL 1445 and

SDSS 1507 are unusual systems and are discussed in the following sections. They

are not included in the sample of post-period minimum CVs. Therefore, there are

two strong candidates for post-period minimum CVs (SDSS 1035 and SDSS 1433)

from the total sample of 17 CVs (nine of which are SDSS systems). From this, it is

estimated that ∼ 12 per cent of all CVs below the period gap and ∼ 18 per cent of

all short period CVs (Porb ≤ 95 mins) have evolved past the period minimum. This

crude estimate neglects selection effects; there is of course some natural bias against

period bouncers, as they tend to be extremely faint objects and thus more difficult

to observe (Littlefair et al., 2003; Pretorius et al., 2007). Because the majority of the

short period systems studied are SDSS CVs, other selection effects cannot be ruled

out. However, Gänsicke et al. (2009) have shown that the number of period minimum

CVs found within the SDSS is broadly consistent with other surveys, allowing for

normalisation of survey volumes. The target selection for the objects presented in

this thesis (see §2.1.1) is not thought to contribution any additional bias towards

or against period bouncers as all objects with orbital periods below the gap were

targeted equally; the limiting factor was object visibility at the time of observation.

Selection effects aside, these findings are consistent with current population synthesis

models, albeit to a very crude approximation given the small sample of objects.
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5.3.3 SDSS J1507+5230

The orbital period of SDSS 1507 is far below the well-defined period minimum and

thus the nature of this system is of great interest to theorists and observers. It is

possible that this system represents the true orbital period minimum as predicted by

Kolb & Baraffe (1999). However, if this is indeed the case, a large number of systems

would be expected between orbital periods of 67 minutes and 83 minutes, where the

period spike is observed (Gänsicke et al., 2009). These systems are not observed, and

hence it is likely that some other mechanism is responsible. Littlefair et al. (2007)

speculate that this system was either formed directly from a white dwarf/brown

dwarf binary, while Patterson et al. (2008) argue that the system could be a member

of the halo. Both derive system parameters, and both obtain distance estimates to

the system.

The system parameters derived in this study are consistent with those of Littlefair

et al. (2007) and Patterson et al. (2008), within uncertainties. The new distance

estimate is in excellent agreement with Littlefair et al. (2007), which is not suprising

because both distances are calculated using the same methods and dataset. However,

the new distance estimate still places the system nearer than that of Patterson et al.

(2008). Patterson et al. (2008) obtain a lower limit to the distance using parallax.

The parallax value implies a distance d > 175 pc, which taken alone, is consistent

with that found in this study of d = 168 ± 12 pc. Patterson combines his parallax

with a range of other observational constraints using Bayesian methods to yield a

final distance estimate of d = 230±40 pc. If the distance of d = 168±12 pc is nearer

the true distance, then combining with Patterson’s proper motion measurement of

0.16′′/yr yields a transverse velocity of d = 128 ± 9 kms−1. This lower transverse

velocity is still very much an outlier in the distribution of 354 CVs shown in Fig. 1 of

Patterson et al. (2008). Therefore, regardless of which distance is correct, the proper
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motion of SDSS 1507 still supports halo membership. Halo membership is further

supported by Uthas et al. (2011), who use UV spectroscopy to obtain an estimate of

the metallicity. Their value is found to be significantly sub-solar, and comparible to

halo stars of a similar space velocity.

5.3.4 PHL 1445

PHL 1445 is an unusally active system given that its orbital period is close to the

period minimum. The white dwarf mass is comparible to other systems at similar

orbital periods, although the mass of the secondary star is slightly higher than ex-

pected. This could be because the system formed from an evolved donor, or because

the bright spot egress has been incorrectly identified as a result of the heavy flicker-

ing, giving an incorrect mass ratio. Given the scatter present in the data, the latter

cannot be ruled out. This system remains of high interest and follow up photometry

and spectroscopy is desired.

5.3.5 Exploring the Standard Model of CV Evolution

Figure 5.7 shows the evolutionary models of Kolb & Baraffe (1999) calculated with

enhanced mass-transfer rates. Also shown is a model with 50 percent star spot

coverage on the surface of the secondary star. In both cases, the effects of distortion

of the secondary star due to tidal and rotational forces (Renvoizé et al., 2002) are

included. The positions of the period minimum, and period gap, as found by Knigge

(2006) are also shown. Mass determinations for all systems presented in this study are

included. From Figure 5.7, it is clear that the standard theoretical models are a poor

fit to the data. For a given mass, the models of Kolb & Baraffe (1999) significantly

underestimate the orbital period, and thus the secondary star radii.

Models with enhanced mass transfer rates and star spot coverage do rather better
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at reproducing the observed secondary star masses, although the general scatter of

short period systems makes choosing between these difficult. This is in line with the

conclusions of Littlefair et al. (2008). The models begin to diverge significantly at

orbital periods greater than 100 minutes; unfortunately, in this regime there are few

systems with precisely known secondary masses. Clearly, more mass determinations

for systems with orbital periods between 100 and 130 minutes are required.
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Figure 5.7: The M2 − Porb relationship. Mass determinations for all systems using
ultracam data are included. The objects marked with in green are the systems not
included in Savoury et al. (2011). The evolutionary models of Kolb & Baraffe (1999)
calculated with different mass-transfer rates are shown with red (dashed) and blue
(dot-dashed) lines. A model with 50 percent star spot coverage on the surface of the
secondary star is shown with an orange (dotted) line. In the modifed models, the
effects of distortion of the secondary star due to tidal and rotational forces (Renvoizé
et al., 2002) are taken into account. The solid (black) line shows the empirical mass-
radius relationship as found by Knigge (2006). The position of the period minimum
and period gap, as found by Knigge (2006), are also shown.



Chapter 6

A Radial Velocity Study of CTCV

J1300-3052

The contents of this Chapter have been published by Savoury, Littlefair, Marsh,

Dhillon, Parsons, Copperwheat and Steeghs in the Monthly Notices of the Royal

Astronomical Society, 2012, 422, 469-477, in a manuscript entitled ‘A radial velocity

study of CTCV J1300-3052’. The work was carried out in collaboration with Stuart

Littlefair, Tom Marsh, Vik Dhillon, Steven Parsons, Chris Copperwheat and Danny

Steeghs (Savoury et al., 2012). The reduction and analysis of the data and the fol-

lowing text are my own work unless stated otherwise.

6.1 Introduction

In Chapter 5 I carried out a photometric study of eclipsing CVs and found the masses

and radii for both the white dwarf and secondary star in 17 systems. These masses

were found by fitting a parameterised model to the eclipse light curves. Photometric

mass determinations such as these are based on a number of assumptions which,
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whilst reasonable, remain untested across a wide range of orbital periods. It is

photometric mass and radii determinations such as these that are used to calibrate

the ε-q (superhump excess-mass ratio) relations of Patterson et al. (2005), Knigge

(2006) and Pearson (2006), which can then be used to derive secondary star mass

estimates for large samples of CVs. It is therefore important to check the validity of

photometric mass determinations.

For objects with orbital periods above the period gap, the photometric fitting

technique appears robust, with the secondary star radial velocities predicted by pho-

tometry in agreement with those found by other techniques (Watson et al., 2003;

Feline, 2005; Copperwheat et al., 2010). However, for objects below the period gap,

independent tests of the photometric technique are rare. Tulloch et al. (2009) found

the radial velocity of the white dwarf (Kw) in SDSS J143317.78+101123.3 (Porb =

78.1 mins), as measured from disc emission lines, to be in excellent agreement with

the photometric value predicted by Littlefair et al. (2008). The agreement is encour-

aging, but the motion of the inner disc does not necessarily follow the motion of the

white dwarf, and so Kw estimates from disc emission should be treated with caution

(e.g. Marsh, 1988). More recently, Copperwheat et al. (2012) found the radial veloc-

ity and rotational broadening of the secondary star in OY Car (Porb = 90.9 mins) to

be in good agreement with those predicted by photometric methods (Wood & Horne,

1990; Littlefair et al., 2008). However, it is possible that the assumptions made in

the modelling process may break down at certain orbital periods; for example, the

assumption of a ballistic trajectory for the gas stream may not be valid in instances

where the accretion flow is very low (e.g. short period); the surface of the white dwarf

may be partially covered when the accretion flow is high (e.g. long period); or the

white dwarf mass-radius relationship used may not be appropriate for the given mass

and temperature of the white dwarf. Such is the importance of mass determinations

in CVs, additional verification across a range of orbital periods is highly desirable.
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One of the systems analysed in Chapter 5 was CTCV J1300-3052 (hereafter CTCV

1300). Its orbital period is 128.1 minutes, placing it immediately below the period

gap. The average spectrum obtained by Tappert et al. (2004) showed clear emis-

sion lines from the accretion disc and absorption lines from the secondary star. It is

through absorption lines such as these that the radial velocity and rotational broad-

ening of the secondary star can be found, which can in turn be used to derive an

independent measure of the masses and radii of the component stars (e.g. Horne

et al., 1993; Smith et al., 1998; Thoroughgood et al., 2001, 2004).

In this Chapter I present time resolved-spectroscopy of CTCV 1300 and determine

the system parameters. The parameters derived using spectroscopy will provide an

independent test of the photometric methods used in Chapter 5.

6.2 Results

6.2.1 Average Spectrum

The average spectrum of CTCV 1300 is shown in Figure 6.1. The upper panel

shows the wavelength range 3200-5500 Å (from the UVB-arm), the centre panel

shows 5750-10000 Å (from the VIS-arm), and the lower panel 10000-13500 Å (from

the NIR-arm). Note that the scales differ between panels. Each spectrum is flux

calibrated, and correction for telluric absorption has been attempted. The redder

bands from the NIR-arm (H and K) are not shown; this is because the only features

visible are telluric or sky lines that have not been completely removed.

Throughout the spectrum, strong, broad, double-peaked Balmer lines and several

double-peaked He I lines (4471, 4922, 5015, 5875, 6678, 7065 and 10830 Å) are visible.

Broad double-peaked lines such as these are typical of a high-inclination accreting

binary (e.g. Horne & Marsh, 1986).
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Figure 6.1: The average spectra of CTCV 1300, in the rest frame of the binary. The
upper panel shows the UVB-arm, the centre panel the VIS-arm, and the lower panel
the NIR-arm. The most prominent features are labelled.
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The high ionisation line He II 4686 Å appears absent in the average spectrum,

but is visible in the trailed spectra (see §6.2.2 and §6.2.3). Several absorption lines

are present between 4000-4800 Å, as shown in Figure 6.2, which appear to trace the

motion of the disc (see §6.2.2). The most likely cause of these absorption lines is

thought to be a veil of disc material along the line of sight. The majority of these

lines appear to be Fe I, Fe II and Ca I. Similar features have been observed in the

spectrum of OY Car by Horne et al. (1994) and Copperwheat et al. (2012) (the ‘iron

curtain’).

The helium lines at 4922, 5015 Å appear to show strong, narrow absorption cores

that dip below the continuum, as do the higher-order Balmer lines between 3600-4000

Å. The O I triplet at 7773 Å is clearly visible, and also appears to drop below the

continuum. Features such as these are observed in a number of CVs (e.g Marsh, 1987;

Wade & Horne, 1988; Friend et al., 1988). The deep absorption cores are believed to

originate through self-absorption in the accretion disc.

The Ca II triplet at 8498, 8542 and 8662 Å (hereafter 8567 Å) is clearly present and

originates from the disc, although there is evidence of emission from the irradiated

side of the secondary star (see §6.2.2 and §6.2.3). Similar features have been observed

in the spectrum of GW Lib (van Spaandonk et al., 2010). The higher orders of the

Paschen series are also visible from ∼8800 Å onwards, and are possibly blended with

the Ca II emission.

Absorption features from the secondary star are clearly visible in the form of TiO

bands around 7100 Å and 7600 Å, and weak K I absorption doublet at 7664, 7699

(hereafter 7682 Å), 11773, 12432 and 12522 Å. However, these regions are heavily

affected by telluric absorption. The clearest features from the secondary star are

the Na I doublets at 8183, 8194 Å (hereafter 8189 Å) and 11381, 11404 Å (hereafter

11393 Å), although the feature at 11393 Å is heavily affected by telluric absorption.
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Figure 6.2: The average spectrum of CTCV 1300 between 4130-4330 Å, corrected to
the rest frame of the white dwarf. Spectra taken during eclipse are not included in
this average.

6.2.2 Trailed Spectra

The data were phase binned into 30 bins, according to the ephemeris presented in §4.2.
The UVB-arm has complete phase coverage, although due to the differing exposure

times (see §2.1.2), one of these bins is empty in both the VIS and NIR-arms.

The continuum was divided by a polynomial fit and spectra re-binned onto a

constant velocity-interval scale centred on the rest wavelength of the lines. Figure

6.3 shows the trailed spectra of the Hα, Hβ, Hγ and Hδ lines in CTCV 1300. Each

line shows two clear peaks that vary sinusoidally with phase, in addition to the

characteristic s-wave between phases 0.1–0.4 from the bright spot.

Figure 6.4 shows the trailed spectra of two Na I doublets (8189 and 11393 Å), the

Ca II triplet (8567 Å), the 7682 Å K I doublet and He II (4686 Å) lines. The phases

at which the Na I and K I lines show maximum red-shift (φ = 0.25) and blue-shift

(φ = 0.75) suggests that they originate from the secondary star. There is evidence
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Figure 6.3: The trailed spectra of the Hα (top left), Hβ (top right), Hγ (bottom left)
and Hδ (bottom right) lines in CTCV 1300.

for emission from the secondary star in the Ca II lines through a component in the

trail that is in phase with the Na I lines. However, this component is only visible

during phases ∼0.25-0.75, which indicates that it arises from the irradiated side of

the secondary star (see §6.2.5). The He II line appears to follow the motion of the

bright spot, as defined by the s-wave in the Balmer trails.

Figure 6.5 shows the trailed spectra of the absorption line forest between 4130-

4300 Å. The lines all appear to move together, suggesting a common place of origin.

Using the same method outlined in §6.2.4, the velocity of these lines was found to

to be Kabs = 116 ± 4 km s−1, with a phase offset of Δφ = 0.072 ± 0.006. The high

velocity, (compared to the expected motion of the white dwarf, ∼ 90 km s−1, see

§5.2.1) and significant phase offset suggests that these lines originate in the disc.
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Figure 6.4: The trailed spectra of the 8189 and 11393 Å Na I doublets (upper left
and upper centre, respectively), the 7682 Å K I doublet (top right), the Ca II triplet
(8498, 8542 Å bottom left, 8662 Å bottom centre) and He II (4686 Å, bottom right) in
CTCV 1300. Black and white lines represent absorption and emission, respectively.
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Figure 6.5: Trailed spectra of the forest of Fe I, Fe II and Ca I absorption lines
between 4130-4300 Å.

6.2.3 Doppler Tomography

Figure 6.6 shows Doppler maps for Ca II (8498, 8542 & 8662 Å), Hα, Hβ and He

II (4686 Å). Eclipse data (between phases 0.95 and 1.05) were removed. A systemic

velocity of γ = -20 km s−1 was applied to shift the maps onto the Kx = 0 km s−1

axis (see §6.2.4).
In each map there is a ring-like distribution of emission centred on the white

dwarf, which is characteristic of an accretion disc. In the Ca II maps, an enhanced

area of emission is present at velocities intermediate to the free-fall velocity of the gas

stream (lower stream) and the velocity of the disc along the gas stream (Keplerian

velocity, upper stream). This emission is attributed to the bright spot. The three

Ca II maps all show clear emission from the secondary star, which appears to be

concentrated towards the inner hemisphere, indicating that irradiation is significant.

The Hα map shows weak emission from the secondary star, a feature uncommon

in short period CVs. The Hβ map shows weak bright spot emission. The He II
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Figure 6.6: Doppler maps of CTCV 1300 in Ca II (8498, 8542, 8662 Å), Hα, Hβ
and He II (4686 Å) computed from the trailed spectra in Figures 6.3 and 6.4. Data
taken during eclipse have been ommited from the fit. The predicted position of the
secondary star and the path of the gas stream are marked. The three crosses on the
map are, from top to bottom, the centre of mass of the secondary star, the centre
of mass of the system, and the white dwarf. These crosses, the Roche lobe of the
secondary star, the Keplerian velocity along the gas stream (top curve), and the
predicted trajectory of the gas-stream (bottom curve) have been plotted using the
system parameters found in §6.2.7. The series of circles along the gas stream mark
the distance from the white dwarf at intervals of 0.1L1, where 1.0L1 is the secondary
star.
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emission appears to show emission near both the Keplerian velocity stream and at

velocities intermediate to the Keplerian velocity stream and free-fall velocity stream,

although it is possible that this is an artifact arising from limited phase coverage

(Marsh & Horne, 1988). If this is a genuine feature, its position relative to the Ca

II emission suggests that the He II emission is caused by a mixture of gas-stream

and disc material. He II bright spot emission at Keplerian disc velocities has been

observed in other short period CVs (Marsh et al., 1990; Copperwheat et al., 2012).

6.2.4 Radial velocity of the Secondary Star

The secondary star in CTCV 1300 is visible through weak absorption lines. The

strongest of these lines is the Na I doublet at 8189 Å. In order to determine the

radial velocity, the individual spectra of CTCV 1300 were cross-correlated against

template spectra as described in §3.5.1. The Na I line at 8189 Å was used because it

is much stronger and less affected by telluric absorption than the line at 11393 Å.

Fits to the continuum were subtracted from the individual spectra, which were

then corrected for the orbital motion of the secondary star with a first guess of

K2. For each individual spectrum, a template spectrum was created that consisted

of an average of all the spectra minus the spectrum under study (Marsh et al.,

1994). Because these template spectra were made from the CV data, they did not

require broadening for orbital smearing or the rotational velocity of the secondary

star. These template spectra were then cross-correlated against the uncorrected data.

This yielded a new value of K2 and γ to correct the spectra with. An intrinsic error

was summed in quadrature to each error bar to account for systematic error and reach

a reduced-χ2 of 1. This process was repeated until K2 converged, which corresponded

to a value of K2 = 379 ± 6 km s−1, with a systematic error of 22 km s−1 added in

quadrature to each error bar. The radial velocity curve obtained using this technique

is shown in the upper panel of Figure 6.7.
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The value of γ obtained via the auto-correlation technique is not representative

of the true systemic velocity, which must be determined through cross-correlation

with a template star of known radial velocity. Therefore, in order to verify this result

and find the true systemic velocity (γ), the normalised spectra of CTCV 1300 were

cross-correlated against the M-dwarf template spectra (see §2.1.2) using the same

wavelength range. The template spectra were artificially broadened by 46 km s−1

(see Equation 3.9) to account for the orbital smearing of CTCV 1300 through the

210-second VIS-arm exposures (see §2.1.2), and then by the best-fitting values for

the rotational velocity of the secondary star (v sin i) found in §6.2.6. An intrinsic

error of 22 km s−1 was added to each error bar from the M2V cross-correlation, and

24 km s−1 to M5V data, to account for systematic errors and reach a reduced-χ2

of 1. The radial velocity curves are shown in the centre panel (M2), and bottom

panel (M5) of Figure 6.7. Cross-correlating against the M2 and M5 templates yield

values of K2 = 373 ± 6 km s−1 and K2 = 376 ± 7 km s−1, respectively. The M2

template could not be corrected for flexure, and so only the M5 template was used

to derive the systemic velocity for CTCV 1300. Using the radial velocities provided

by Gizis et al. (2002), a value of γ = -20 ± 5 km s−1 was found. For K2, the value

found through the auto-correlation, that is K2 = 379 ± 6 km s−1 is preferred. This

is because the average spectra of the data is a better match to the data than the M5

and M2 templates.

The radial velocity curves produced through this technique show some variation

from a sine fit between phases 0.4 to 0.6, which is characteristic of irradiation sup-

pressed absorption (e.g. Billington et al., 1996). Marsh & Horne (1988) recommend

only fitting the above data between phases 0.8 to 1.2, because at these phases the

effects of irradiation are at a minimum. Fitting the auto-correlation data gives a

value of K2 = 378 ± 6 km s−1, which is used hereafter. This value is in excellent

agreement with the photometric value predicted in §5.2.1, K2 = 372.2 ± 2.5 km s−1.
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Fitting the M5 and M2 templates between the same phases gives K2 = 372 ± 7 km

s−1 and K2 = 378 ± 8 km s−1 respectively, which are in excellent agreement with

the auto-correlation data and the photometric method.

6.2.5 Irradiation of the Secondary Star

The Doppler maps of Ca II emission presented in Figure 6.6 suggest a very different

value of K2 to that found from cross-correlating the Na I doublet, which indicates

that irradiation may be affecting one, or perhaps both, of these measurements. As

discussed in §6.2.4, the radial velocity curves produced via cross-correlation of the

sodium doublet (Figure 6.7) show some variation from a sine curve, suggesting that

irradiation affects the sodium doublet. Because this line is in absorption, a decrease

in line flux at phase 0.5 would be expected. This effect is observed, although the flux

is found to vary by less than 5 per cent across an orbital cycle. In contrast, the Ca

II emission varies significantly throughout the orbital cycle. The component from

the secondary star is only visible during phases ∼0.25-0.75, when the inner face is

along the line of sight. This suggests that irradiation heavily affects the distribution

of calcium emission.

The estimates ofK2 measured from the Doppler maps (Figure 6.6), were corrected

for the effects of irradiation using Equation 3.14 and the values of q and R2/a found

in §6.2.7. The resulting values are shown in Table 6.1. The estimates of K2 from the

doppler maps, once corrected for irradiation, are consistent with K2 = 378 ± 6 km

s−1 found from fitting the sodium doublet.

For the Hα emission, both the uncorrected K2 and the corrected K2 (f = 0.50)

value are consistent with K2 measured from the sodium lines. The Hα emission

therefore appears to be consistent with optically thick emission excited by irradiation

from the white dwarf and inner disc.
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Figure 6.7: The radial velocity curve of CTCV 1300 obtained through auto-
correlation (upper panel), cross-correlation against an M2 template (centre panel)
and cross-correlation against an M5 template (lower panel).
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Table 6.1: Measured and corrected values of K2 found using optically thick (f=0.50)
and thin (f=0.77) corrections.

Ion Line Kmeas Kcorr (f=0.77) Kcorr (f=0.50)
(Å) (km s−1) (km s−1) (km s−1)

Na I 8183/8194 378± 6 - -
Ca II 8498 298± 5 403± 15 359± 11
Ca II 8542 298± 15 403± 29 359± 22
Ca II 8662 277± 22 370± 40 330± 30
Hα 6562 350± 50 470± 80 420± 70

6.2.6 Rotational Velocity of the Secondary Star

The normalised spectra of CTCV 1300 were corrected for the orbital motion of the

secondary star using the value of K2 obtained in §6.2.4. The spectra were then

averaged together in order to maximise the strength of the Na I doublet at 8189 Å.

The spectral-type templates were broadened to match the smearing due to the orbital

motion of CTCV 1300 through the 210 second VIS-arm exposures and rotationally

broadened by a range of velocities (50-200 km s−1) as described in §3.5. In principle,

the orbital smearing is a function of orbital phase, and thus varies throughout the

orbital cycle. In this study a single value of 46 km s−1 was adopted, which is the

average value of the smearing across an orbital cycle. Changing this to the maximum

and minimum possible values of orbital smearing required, that is the smearing at

conjunction and quadrature, was found to alter the final value of v sin i obtained by

3 km s−1. This uncertainty is added in quadrature to the uncertainties calculated

below.

The value of v sin i was found using the optimal-subtraction technique described

in §3.6. This required an estimate of the limb-darkening coefficient of the secondary

star and a smoothing coefficent to smooth the residuals when computing χ2. The

limb-darkening coefficient is highly uncertain, although Copperwheat et al. (2012)

have shown that altering the limb-darkening coefficient has little effect on the value

of v sin i obtained. In this thesis, a limb-darkening coefficient of 0.5 and smoothing
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Gaussian of FWHM = 15 km s−1 was adopted. A wavelength range of 8080-8106,

8125-8206, 8226-8245 and 8264-8285 Å was used, which attempted to include as much

of the continuum as possible around the Na I doublet, whilst trying to avoid telluric

regions.

The values of χ2 versus v sin i for both spectral-type templates are shown Figure

6.8. After removing the intrinsic v sin i of the template stars (M5 ≈ 3 km s−1, M2 ≈
9 km s−1), a value of v sin i = 129 ± 3 km s−1 was obtained for the M2 template and

a value of v sin i = 125 ± 4 km s−1 for the M5 template. The uncertainties on these

values come from the formal error estimation of Δχ2= ±1. This does not attempt to

include systematic errors. Because of the lack of available templates, the spectral type

of the secondary star was estimated using the empirical donor sequence of Knigge

et al. (2011). For a system with an orbital period of 128.07 minutes, spectral type

of the secondary star is expected to be ∼M4.3. A spectral type of M4.5 ± 0.5 was

therefore adopted. Interpolating between the two values of v sin i above gives a final

value of v sin i = 125 ± 7 km s−1. This error takes into account the uncertainty on

finding the minimum v sin i for each template (± 3-4 km s−1 for each template), the

uncertainty from averaging the orbital smearing (± 3 km s−1), and the uncertainty

in spectral type (±0.5 spectral types).

6.2.7 System Parameters

Using the values of K2 = 378 ± 6 km s−1 and v sin i = 125 ± 7 km s−1 found in

§6.2.4 and §6.2.6 in conjunction with the orbital period and a measurement of the

eclipse full width at half depth (Δφ1/2), accurate system parameters for CTCV 1300

can be calculated. The best measurement of the orbital period, Porb, comes from

§4.2, where Porb = 0.088940717(1) days. In Figure 5.1a, there are six light curves of

CTCV 1300, from which it was determined that Δφ1/2 = 0.0791(5).

The system parameters and their errors were calculated using a Monte Carlo
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Figure 6.8: χ2 vs v sin i from the optimal subtraction technique.



6.2. Results 160

Table 6.2: System parameters for CTCV 1300.

Parameter Measured Values Monte Carlo Values Photometric
Porb (s) - - 0.088940717(1)
Δφ1/2 0.0791± 0.0005 - not stated
K2 (km s−1) 378± 6 - 372.2± 2.5
v sin i (km s−1) 125± 7 - 122± 10∗

q - 0.252± 0.025 0.240± 0.021
io - 85.7± 1.5 86.3± 1.1
Mw/M� - 0.79± 0.05 0.736± 0.014
M2/M� - 0.198± 0.029 0.177± 0.021
R2/R� - 0.223± 0.011 0.215± 0.008
a/R� - 0.834± 0.020 0.813± 0.011
Kw (km s−1 ) - 95± 9 90± 8
Distance (pc) 260± 50 - 375± 13

∗ Derived using the values in Table 5.1a and Equation 3.12.

approach similar to Horne et al. (1993), Smith et al. (1998), Thoroughgood et al.

(2001) and Thoroughgood et al. (2004). The Monte Carlo simulation took 250,000

values of K2, Δφ1/2, v sin i and Porb, treating each as being normally distributed

about their measured values with standard deviations equal to the errors on the

measurements. The mass of each component, the inclination of the system and the

radius of the secondary star were then calculated as as described in §3.7, omitting

(K2, v sin i, Δφ1/2) triplets that are inconsistent with sin i ≤1. Each accepted M1,

M2 pair is plotted in Figure 6.9, and the masses and their errors are computed from

the mean and standard deviation of the distribution of these pairs. The mass of the

white dwarf was found to be M1 = 0.79 ± 0.05 M�, and the mass of the secondary

star M2 = 0.198 ± 0.029 M�. These values are found to be in good agreement with

those presented in Table 5.1a. The values of all system parameters found from the

Monte Carlo simulation are listed in Table 6.2, along with those presented in Table

5.1a for direct comparison.
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Figure 6.9: Monte Carlo determination of system parameters for CTCV 1300. Each
dot represents an (M1, M2) pair. Dot-dashed lines are lines of constant inclination,
the solid curves satisfy the constraints from the radial velocity of the secondary star,
K2, and the dashed lines satisfy the constraints of the rotational velocity of the
secondary star, v sin i.
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6.2.8 Distance

At mid-eclipse (φ = 0), the apparent magnitude of the system is 16.90 ± 0.05 around

the Na I doublet, which is approximately the I-band. This value is not corrected for

differential slit losses. The secondary star is found to contribute 62 ± 14 per cent at

mid-eclipse, which gives an apparent magnitude of mI = 17.43 ± 0.26. The absolute

magnitude can be estimated using the revised empirical donor sequence of Knigge

et al. (2011) to obtain MI = 10.32 ± 0.14. Using Equation 3.15, a distance of d =

260 ± 50 pc was obtained. This distance places the system somewhat closer than

the distance of d = 375 ± 13 pc found in Chapter 5, but still consistent to ∼ 2.2σ.

6.3 Discussion

The system parameters listed in Table 6.2 are found to be in good agreement with

those found using the photometric method in Chapter 5. Together with Copperwheat

et al. (2012), there is confidence that photometric mass determinations such as those

of Chapter 5 are reliable across a range of orbital periods, and that the ε-q relations

of Patterson et al. (2005), Knigge (2006) and Pearson (2006) are well founded across

the range of orbital periods tested.

The uncertainties in the system parameters for CTCV 1300 determined in this

Chapter, and in Chapter 5, are quite large in comparison to many of the other

systems studied in Chapter 5. The reason for the large uncertainties in CTCV 1300

in Chapter 5 is because the eclipse light curves used for model fitting suffer from

heavy flickering, which causes difficulties in obtaining an accurate value for the mass

ratio, q. The large uncertainties in this Chapter arise because of the interpolation

technique used to arrive at a value for v sin i. The error on v sin i (± 7 km s−1) is the

dominant source of uncertainty in the final system parameters. In principle, a wider

selection of spectral type templates would allow for further constraining of v sin i and
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the derivation of the spectral type of the secondary star.



Chapter 7

The Brown Dwarf Mass Secondary

Star in SDSS J1433+1011

The contents of this Chapter are to be submitted for publication by Savoury &

Littlefair in the Monthly Notices of the Royal Astronomical Society (Savoury &

Littlefair, 2013). This work was carried out in collaboration with Stuart Littlefair,

who was responsible for applying for the use of the GEMINI facilities, and producing

a model spectrum of SDSS 1433 (Figure 7.1 of this Chapter). The reduction and

analysis of the data and the following text are my own work.

7.1 Introduction

The effective temperatures of the secondary stars in CVs are a useful indicator of

the evolutionary status of CVs and their secondary stars (e.g. Smith & Dhillon,

1998; Beuermann et al., 1998; Baraffe & Kolb, 2000; Knigge et al., 2011). Using

Teff − Porb relationships, the presence of evolved secondary stars have been inferred

(e.g. Thorstensen et al., 2002; Littlefair et al., 2006b; Rodŕıguez-Gil et al., 2009).

These relationships are useful, however they are unconstrained for systems that have

164
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evolved past Pbounce due to a lack of direct observational evidence.

Systems that have evolved past Pbounce should contain brown dwarf like secondary

stars. These objects are a unique type of star; a previously stellar object stripped of

mass until it falls below the hydrogen burning limit. Despite the fact that various

models (e.g. Kolb, 1993; Willems et al., 2005) predict that between 15 and 70 per cent

of the CV population should have evolved to such a point where the secondary star

has become degenerate, there is no direct spectroscopic evidence for the existence

of these objects (Littlefair et al., 2003). Although several authors have inferred the

presence of an L-type secondary star in some CVs (e.g. Mennickent et al., 2004;

Unda-Sanzana et al., 2008; Aviles et al., 2010), these objects are not necessarily

sub-stellar, as some L-dwarfs may be capable of hydrogen fusion (Kirkpatrick et al.,

1999). Sub-stellar status can only be confirmed in these systems with an accurate

determination of the secondary star mass. The combination of effective temperature

and secondary star mass (and Porb) make a powerful tool for probing the evolutionary

status of CVs and their secondary stars. Sadly, there are no CVs that are known

to possess a sub-stellar secondary star and have an accurate determination of the

secondary star’s effective temperature.

The light curve modelling technique used in Chapter 5 revealed the presence of

three secondary stars with masses below the hydrogen burning limit. Of the objects

found in Chapter 5, SDSS 1507 is halo CV (Patterson et al., 2008; Uthas et al., 2011),

and so there are two stars that can be considered as ‘normal’ post-period-bounce

systems; SDSS 1035 and SDSS 1433. Of these, SDSS 1433 has the secondary star

with the highest mass, and is therefore more likely to have the brightest secondary

star.

A model spectrum of SDSS 1433 was produced by fitting white dwarf and accre-

tion disc models to the GALEX UV fluxes (Morrissey et al., 2007) and SDSS optical

spectrum (Szkody et al., 2007) simultaneously (e.g. Gänsicke et al., 2006; Little-



7.2. Results 166

fair et al., 2008). This model spectrum was then extrapolated into the infrared, as

shown in Figure 7.1. Also shown in Figure 7.1, are UKIDSS photometry data points

(Lawrence et al., 2007; Warren et al., 2007), which show the predicted spectrum

significantly underestimates the flux. This indicates that the secondary star could

make a significant contribution to the total J-band light. Although encouraging, this

model spectrum should be treated with caution. The spectrum of the accretion disc

and bright spot is highly uncertain at infrared wavelengths, and cyclotron emission

from the magnetic field of the white dwarf may also be significant (Littlefair et al.,

2005). Nevertheless, the infrared excess indicates that SDSS 1433 represents the best

chance of making a direct spectroscopic detection of a brown dwarf like secondary

star in an accreting binary. A direct detection of the secondary star would be unique,

and determination of the spectral type would provide another independent test of

binary evolution models (e.g. Smith & Dhillon, 1998; Patterson et al., 2005; Knigge,

2006; Knigge et al., 2011).

In this Chapter, I attempt to use time-resolved J-band spectroscopy to make a

direct detection of the secondary star in SDSS 1433.

7.2 Results

7.2.1 Average Spectrum

Figure 7.2 shows the average J-band spectrum of SDSS 1433 in the rest frame of

the binary and the rest frame of the secondary star. M5, L3 and L8 template stars

(Cushing et al., 2005) and a telluric spectrum created from an G2V template (see

§2.6.2) are also shown for comparison.

The average J-band flux of the system (across all orbital phases) is estimated to

be 0.064 ± 0.004 mJy, which gives an apparent J-band magnitude of mJ = 18.47 ±
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Figure 7.1: Model spectrum of SDSS 1433. The dashed line shows a model of the
white dwarf and accretion disc, as determined by simultaneous fits to GALEX UV
fluxes and SDSS optical spectrum, and extrapolating into the infrared. The solid line
shows the addition of an L2 (Kelu1AB) secondary star, scaled to the distance of the
system. The open circles show data points from UKIDSS photometry. Figure by Dr.
Stuart Littlefair.
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0.09. This value is not corrected for differential slit losses between the target and

comparison stars.

Accretion Disc Features

The spectrum is dominated by the strong, double-peaked emission lines of He I,

Paschen-γ and Paschen=β. The broad, double-peaked nature of these lines indicate

they originate from the accretion disc (e.g. Horne & Marsh, 1986). The full width

at half-maxima (FWHM) of the He I, Paschen-γ and Paschen-β lines were found to

be 2600± 100 km s−1, 2500± 300 km s−1 and 2300± 100 km s−1 respectively. The

peak separations for these lines were found to be 1500± 300 km s−1, 1400± 400 km

s−1 and 1500±300 km s−1 respectively. These values are in excellent agreement with

those of Tulloch et al. (2009), who found the FHWM of the Hα line to be 2200± 200

km s−1, with a peak separation of 1300± 200 km s−1.

Secondary Star Features

The average spectrum of SDSS 1433 appears to shows increasing flux towards the red

end of the spectrum. The slope of the continuum was measured at (3.30±0.13)×10−2

mJy/μm. The presence of a red continuum could reasonably be attributed to the

secondary star because the white dwarf and accretion disc are expected to have a

blue continuum (e.g. Fig 3.2 of Hellier, 2001). However, at short orbital periods

it is unknown what impact the accretion flow might have upon the shape of the

spectrum. The presence of a red continuum alone is therefore insufficient evidence

for the detection of the secondary star.

There is evidence of a secondary star absorption feature around 13300 Å that is

attributed to the headless water band at 13300 Å. Features observed in other CVs

and L-type dwarfs, such as the Na I doublet around 11393 Å (e.g. Chapter 6) and the

K I doublet around 11731 Å (e.g. Copperwheat et al., 2012) appear weak or absent. It
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is possible that these features are lost in the noise of the spectrum (Littlefair et al.,

2000). The Na I lines are also located at a region in the spectrum where telluric

features are the most prominent, further increasing the uncertainty of any detection.

There is some tentative evidence of K I absorption around 12432 Å.

When the spectrum is corrected for the expected orbital motion of the secondary

star as found in Chapter 5 (see Figure 7.2), the second component of the potential

K I absorption doublet around 12477 Å appears present, which was not previously

visible. The water band, which was previously visible, is still clearly present in the

average spectrum, however it appears sharper.

There is no evidence of H2O or CH4 absorption around 11000 Å in either spectra,

which, for mid to late T-dwarfs, should be similar in strength to that of the water

band (e.g. Kirkpatrick, 2005; Burgasser, 2007).

7.2.2 Skew Mapping

Given the faintess of the potential secondary star features and the poor signal-to-

noise of the data, there is an element of uncertainty as to whether these observed

features are genuine absorption features or merely random fluctuations in the noise of

the spectrum. However, if these features are real, then a skew map should produce a

clear peak, centered on the radial velocity of the secondary star (see §3.5.2). If such a

peak is present then it will also provide another independent test of the photometric

modelling technique used in Chapter 5.

The data were phase binned into 15 bins according to the ephemeris of Littlefair

et al. (2008) and a range of template spectra from M5 to L8 were obtained from the

IRTF spectral library (Cushing et al., 2005). The template spectra were broadened

to match the rotational velocity of the secondary star predicted from the system

parameters found in Chapter 5 (v sin i = 99.7 km s−1). The amount of broadening

required for each template was calculated by assuming that the instrinsic rotational
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Figure 7.2: The average J-band spectrum of SDSS 1433. The upper spectrum of SDSS
1433 is in the rest frame of the binary, and offset by 0.06 mJy from the absolute flux.
The lower spectrum of SDSS 1433 has been corrected for the radial velocity of the
secondary star found in Chapter 5 and thus represents an average spectrum in the
rest frame of the secondary star. Also shown is an M5, L3 and L8 template star, and
the telluric spectrum. The template and telluric spectra are normalised and offset.
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velocity of the template stars (Tinney & Reid, 1998; Mohanty & Basri, 2003; Reiners

& Basri, 2007, 2008; Morin et al., 2010; Deshpande et al., 2012), and the additional

broadening required, are added in quadrature to give the total rotational broadening.

The templates and phase binned CV spectra were then normalised by dividing by a

first order polynomial, and then subtracting a 2nd order fit to the continuum. This

ensured that relative line strength across the spectrum was preserved. Both the CV

and template spectra were binned onto the same wavelength scale (11203-13450 Å in

624 pixels), and the template spectrum broadened to match the resolution of the

CV data (see §2.1.3). The Pβ emission line was also masked. Skew maps were then

produced for SDSS 1433 by cross-correlating the phase-binned spectra of SDSS 1433

against the template stars, and then back-projecting the cross-correlation functions

as described in §3.5.2. Figure 7.3 shows the skew map of SDSS 1433 made with the

L2 template, which was found in §7.2.3 to be a reasonable estimate of the spectral

type of the secondary star.

When the skew maps were first produced, the L2 map showed a significant peak at

Kx = 230 ± 50 km s−1, Ky = 470± 70 km s−1. The uncertainties were derived using

a bootstrapping technique, where the cross-correlation procedure was repeated, each

time with one different phase bin masked. The uncertainties from this technique,

σKx and σKy , were found to be σKx = ∼30 km s−1 and σKy = ∼40 km s−1 (assuming

γ = 0 km s−1). The change in position of the peak was then measured by cross-

correlating against a range of different template stars to find the uncertainty given

by the spectral type. This gave σKx = 37 km s−1 and σKy = 50 km s−1. These values

were then added in quadrature to give the final uncertainty. Because the emission

lines were masked, the peak of the skew map can be attributed to the secondary star.

However, the peak of the secondary star should lie on the Kx = 0 axis. It is possible

to shift the peak onto the Kx = 0 axis by introducing a non-zero γ, or by applying

a phase offset.
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Follow up observations made with a 0.5m telescope1 in March 2012 revealed a

phase lag of φ = +0.09 between the observed mid-eclipse time and the mid-eclipse

time predicted by the ephemeris of Littlefair et al. (2008). This difference is not

consistent with statistical errors. The rate of change in orbital period (Ṗ ) required

to create a phase shift of φ = +0.09 is (5.2 ± 0.5) × 10−8 days yr−1 (see Appendix

C). This is several orders of magnitude larger than expected for systems near the pe-

riod minimum (Knigge et al., 2011). Enhancing the mass transfer rates by including

enhanced AML (e.g. Willems et al., 2005; Littlefair et al., 2008) only improves this

difference by a factor of 10, and so it is likely that an additional mechanism is respon-

sible for the observed period change. Possible explanations for the observed phase

lag could be the presence of a third body affecting the arrival time of the eclipses, or

a low sampling rate in the original observations that lead to the uncertainties being

underestimated. Further monitoring of SDSS 1433 is thus highly desirable to deter-

mine an improved ephemeris. The observed phase lag indicates that the ephemeris

used to phase bin the data may not be valid for the spectroscopic observations ob-

tained in 2009 and 2010, and that a phase offset may be appropriate. A phase offset

of φ = −0.0675 was found to be sufficient to shift the peak of the skew map onto or

close to the Kx = 0 axis, without the need to introduce a non-zero γ.

The L2 map in Figure 7.3 shows a significant peak at Kx = −30 ± 50 km s−1,

Ky = 520± 50 km s−1. This value is in excellent agreement with the radial velocity

predicted in Chapter 5 ofK2 = 511±1 km s−1. This provides strong evidence that the

photometric model found in Chapter 5 is correct, and that the tentative absorption

features visible in Figure 7.2 are real.

1Eclipse obtained 13th March 2012 by Dr. Stuart Littlefair. For further information see
https://sites.google.com/site/point5metre/.



7.2. Results 173

Figure 7.3: Skew map for SDSS 1433 produced using an L2 template. The predicted
position of the secondary star and the path of the gas stream are marked. The crosses
on the map are, from top to bottom, the centre of mass of the secondary star, the
centre of mass of the system, and the centre of mass of the white dwarf. These
cross, the Roche lobe of the secondary, the path of the gas stream (lower curve), the
Keplarian velocity of the gas stream (upper curve) are plotted using the values of q,
K2 and Kw derived in Chapter 5.
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7.2.3 The Spectral Type of the Secondary Star

The normalised spectra of SDSS 1433 were corrected for the orbital motion of the

secondary star found in Chapter 5. The spectra were then averaged together in

order to maximise the strength of any secondary star features present. The template

spectra were broadened to match the rotational velocity of the secondary star, as

described in §7.2.2. Both the target spectrum and template spectra were normalised

by dividing by a first order polynomial, and then binned onto the same wavelength

scale (11203-13450 Å in 624 pixels). The Pβ emission line was masked.

Figure 7.4 shows the resulting plot of χ2 versus spectral type (SpT), using a

limb darkening coefficient of 0.5 and smoothing Gaussian of 70 km s−1 (see §3.6).
The points show a clear reduction in χ2 from M5 to around L2.0. Beyond L2.0, χ2

begins to increase. A 3rd order polynomial fit to the data indicates a minimum χ2

corresponding to a spectral type of L2.0. The minimum spectral type was found

to vary slightly depending on the level of smoothing used. In order to estimate

the uncertainty in spectral type, the optimal subtraction routine was repeated with

different levels of smoothing (15 − 200 km s−1) and the resulting change in the

minimum spectra type measured. The minimum was found to vary between L1.5

and L3.0, and so the uncertainty in spectral type was estimated to be ±1.0 SpT.

A similar routine was performed by optimally subtracting the template spectra

(M5-L8) from the L2.0 template, as shown in Figure 7.5. The resulting χ2-SpT plot

has a similar shape to that of Figure 7.4. This indicates that the shapes of the χ2-SpT

plots is due to differences in the line strengths of each template star.

7.2.4 Secondary Star Contributions

The optimal subtraction technique carried out in §7.2.3 suggested a spectral type of

L2.0 ± 1.0 for the secondary star in SDSS 1433. The optimal subtraction routine
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Figure 7.4: Reduced-χ2 versus spectral type from the optimal subtraction technique.

Figure 7.5: The variation in Reduced-χ2 versus spectral type when optimally sub-
tracting from the L2 template.
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also provided an estimate of the fractional contribution of the secondary star to the

total light in the system for a given template star (see §3.6). These contributions are
based upon the absolute line strengths of the absorption features in each template.

Therefore, by taking into account the brightness of the secondary star, it is possible

to place an additional constraint on the spectral type as follows. The revised optimal

model track of Knigge et al. (2011) provides theoretical absolute magnitudes for a

number of Roche-lobe filling secondary stars of different spectral types. Scaling these

magnitudes to take into account the size of the Roche-lobe in SDSS 1433 gives the

expected absolute J-band magnitude of the secondary star in SDSS 1433 for a given

spectral type. If a suitable measurement of the absolute magnitude of the system

is available, then the expected fractional contribution of the secondary star, for a

number of spectral types, can be calculated. Therefore, by comparing the theoretical

fractional contributions to the contributions provided by the optimal subtraction

technique, the contributions with the closest match will thus provide a good estimate

of the spectral type of the secondary star.

The secondary stars of Knigge et al. (2011) have their surface brightness set by

the effective temperature of an equivalent main sequence star, and are then cor-

rected for the surface area of the Roche-lobe. The Roche-lobe depends upon the

mass ratio of the system, and the polytropic index of the secondary star (Sirotkin

& Kim, 2009). Because the sequence of Knigge et al. (2011) assumes a white dwarf

mass of 0.75M�, whereas the modelling process in Chapter 5 suggests ∼0.87M�, the

magnitudes obtained by Knigge et al. (2011) were adjusted using the mass ratio of

q = 0.0661 ± 0.0007 found in Chapter 5. An estimate of the absolute magnitude of

the system was obtained using the distance, d=226± 12 pc obtained through fitting

the white dwarf atmospheres, also in Chapter 5, and the apparent J-band magnitude

of the system as estimated from the average spectrum in §7.2.1 (mJ = 18.47± 0.09).

These figures provided an absolute magnitude of the system of MJ = 11.70 ± 0.20.
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This value is not corrected for differential slit losses between the target and the

standard star and thus represents a fainter limit to the actual magnitude. Figure

7.6 shows a plot of the fractional contributions obtained for each L-template star

from the optimal subtraction routine versus the expected contributions obtained via

scaling the magnitudes of Knigge et al. (2011) for late M and L-type dwarfs. The ob-

served contributions are approximately constant across the range of spectral types,

whilst the expected contributions decrease rapidly until L0, and then steadily de-

crease towards later spectral types. Given the large uncertainties, it is not possible

to constrain the convergence point. However, it is clear from Figure 7.6 that the

two trends converge before L4.5 and later than L0.0. This suggests a spectral type of

L2.0±2.0. This is in excellent agreement with the expected spectral type of L2.0±1.0
found in 7.2.3.

It should however be noted that the point of convergence is highly dependent on

the absolute magnitude of the system. For example, if the apparent J-band mag-

nitude estimated by UKIDSS photometry of mJ = 17.698 ± 0.022 (Lawrence et al.,

2007; Warren et al., 2007) were used, this would provide an absolute magnitude of the

system of MJ = 10.93±0.14. This would shift the expected contributions downwards

on the plot, resulting in a convergence point around M9.0 to L.0. Likewise, if the

magnitude were in fact lower than previously derived, e.g. MJ =∼ 12.5, the expected

contributions would be shifted upwards on the plot, resulting in a convergence point

around L6-L7.

7.3 Discussion

The presence of a red continuum, evidence of typical secondary star absorption lines,

and the peak in the skew map at the expected radial velocity of the secondary star

indicate that a genuine detection of the secondary star in SDSS 1433 has been made.
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Figure 7.6: The observed fractional contribution (circles) of each template versus the
theoretical contribution (crosses).

This is a significant result as this represents the first direct spectroscopic detection

of a brown-dwarf like object in an accreting binary.

By using a variety of techniques, it was possible to estimate the spectral type of

the secondary star. Visual inspection of the average spectrum reveals no evidence of

H2O or CH4 absorption, which appears to rule out mid-to late T-types. Performing

an optimal subtraction technique suggests a spectral type of L2.0±1.0, which is

supported by the brightness of the secondary star relative to the total light of the

system. This indicates that the secondary star in SDSS 1433 has a spectral type of

early to mid L. This is slightly later than, but still consistent with, the spectral type

predicted by the revised optimal model track of Knigge et al. (2011), which suggests

a spectral type of L0 for a secondary star of similar mass to that in SDSS 1433.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis I have performed follow-up observations of a number of recently discov-

ered eclipsing dwarf novae using high-speed, three-colour photometry. The primary

aim of this was to identify systems that are suitable for light curve modelling and

the determination of system parameters. This required the white dwarf and bright

spot ingress and egress features to be clearly visible in their eclipse light curves. As

shown in Chapter 1, system parameters are crucial to improving our understanding

of evolutionary processes that inherent to not only CVs, but also many other areas

of astrophysics (e.g. Warner, 1995; Knigge et al., 2011).

In total, eclipse light curves of 20 CVs were obtained, which in most cases, rep-

resents the best quality data currently available for these objects. Of the sample of

20 CVs, 6 showed clear white dwarf and bright spot ingress and egress features in

their light curves and were therefore deemed suitable for modelling. This sample was

supplemented with an additional 11 eclipsing CVs that had previously been analysed

by other members of my group, taking the total sample size to 17. Of these CVs, 11

are short period (Porb ≤ 95 minutes), and one is within the period gap.

179
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For each of these 17 objects the system parameters were determined by fitting a

physical model of the binary to the observed light curve by χ2-minimisation. Two

of the 11 short period systems appear to have evolved past the period minimum,

which supports predictions that between 15 and 70 per cent of the CV population

has evolved past the orbital period minimum. However, the secondary star masses

and radii were found to be inconsistent with model predictions, with the majority

of secondary stars being ∼10 per cent larger than predicted. I show that this can

explained by either enhancing the mass transfer rate, or by modifying the stellar

physics of the secondary star to take into account star spot coverage. Unfortunately,

more precise secondary star masses for systems with orbital periods between 100 and

130 minutes are needed to choose between these alternatives.

The white dwarfs in this sample were found to show a strong tendency towards

high masses. The high mass dominance seems to imply that the white dwarfs in CVs

are not significantly eroded by nova outbursts, and may actually increase in mass

over several nova cycles. There is no evidence for He-core white dwarfs within this

study, despite predictions that between 40 and 80 percent of short period CVs should

contain He-core white dwarfs.

Studies in the literature (e.g. Copperwheat et al., 2010) suggest that the photo-

metric fitting technique is robust for systems with orbital periods above the period

gap. However, for objects below the period gap, independent tests of the photomet-

ric technique are rare. I therefore obtained time-resolved spectroscopy for one of the

objects for which system parameters were determined through photometric fitting.

The object selected was CTCV 1300, which had an orbital period of 128.1 min.

The double-peaked nature of the Balmer and He I lines present in the average

spectrum confirmed the presence of an accretion disc, whilst careful analysis of the

Na I doublet absorption lines at 8189 Å revealed the radial velocity of the secondary

star to be K2 = 378 ± 6 km s−1, and the rotational velocity of the secondary star
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to be v sin i = 125± 7 km s−1. Using these measurements, I determined the mass of

the white dwarf to be Mw = 0.79 ± 0.05 M� and the mass of the M-type secondary

star to be M2 = 0.198 ± 0.029 M�. The radius of the secondary star was found to

be R2 = 0.223 ± 0.011 R�.

The system parameters determined through spectroscopic analysis were in good

agreement with those previously determined using photometric techniques. This is

significant, as these results support the validity and accuracy of the purely photo-

metric mass determination technique in short period cataclysmic variables.

In the final section of this thesis, I attempted to use time-resolved spectroscopy

of a period bouncing CV to make the first direct spectroscopic detection of a brown

dwarf like secondary star in an accreting binary. The average spectrum of the system

shows appears to show faint absorption features that are typical of absorption from

the secondary star. A skew mapping technique was performed with an L2 template,

which subsequently revealed a significant peak that is attributed to the radial velocity

of the secondary star around K2 = 520 ± 70 km s−1. This is in good agreement

with the value of K2 found from photometric fitting, and therefore confirms that

the absorption features are genuine. This also provides further verification of the

photometric mass determination technique.

The spectral type of the secondary star was estimated using an optimal sub-

traction routine. This method suggests a spectral type of L2.0±1.0. Additional

constraints on the spectral type were placed by visually inspecting the average spec-

trum for the presence of H2O or CH4 absorption. These features were not found,

apparently ruling out mid-to late T-types. A final constraint was placed by using the

contribution of the secondary star to the total J-band light. This technique appears

to rule out mid-to late M-types and late L-types, suggesting a spectral type between

L0 and L4.5, thus supporting the L2.0±1.0 found through optimal subtraction. These

findings are broadly consistent with predictions, which suggest an expected spectral
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type of around L0 for a secondary star of similar mass to SDSS 1433 (Knigge et al.,

2011).

It is likely that with better signal-to-noise data it would be possible to constrain

the spectral type of the secondary star in SDSS 1433 further. High resolution, time-

resolved spectroscopy of SDSS 1433 is therefore highly desirable. With higher quality

data, it should be possible to improve the precision of the spectral type estimation

and also investigate the effects of irradiation.

8.2 Future Work

In this thesis I have shown how crucial accurate and precise system parameters are

to our understanding of CVs. It is therefore important that the work presented in

this thesis be continued. In Chapter 4, two objects (SDSS 1325 and SDSS 1524) had

visible white dwarf and bright spot features in their light curves. On these occasions

the low signal-to-noise of the data meant that it was not possible to constrain the

MCMC model used to determine system parameters. However, it is likely that with

more eclipses of these objects, and thus a greater signal-to-noise ratio, it would be

possible to model the eclipses light curves as I have done for the 17 objects presented

in Chapter 5. Likewise, a further 5 objects (SDSS 1250, SDSS 1555, CSS080227,

GALEX 0035 and SDSS 1006) showed promising light curves that could yield masses

in the future. More systems are also being discovered by Catalina Sky Survey (CSS)

(Drake et al., 2009), so there is no shortage of candidate systems.

The highly active nature of the short period CV PHL 1445 warrants further

study. The orbital period of the system is close to period minimum and so the high

levels of flickering observed in Figure 4.1b are unexpected. Further monitoring with

ultracam is desirable for eclipse mapping purposes, so as to determine the source

of the flickering and nature of the accretion disc.



Appendix A

Model Fits

The following tables list all of the model parameters found via the light curve mod-

elling process. A detailed description of each parameter, and the modelling process,

is given in §3.2.
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Appendix B

CTCV 1300 Double Solution

The following table lists the final system parameters for CTCV 1300, derived using

both model solutions in Table A.1a. The parameters obtained via spectroscopic

methods are also shown for comparison.
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Appendix C

Calculating the Required Rate of

Change of Orbital Period

In Chapter 7, it was found that a phase lag of φ = 0.09 had arisen between the time

of mid-eclipse predicted by the linear ephemeris of Littlefair et al. (2008), and a lone

observation obtained 13th March 2012. The mid-eclipse time for this new observation

was measured by eye to be HMJD 56000.2169(5). The best matching cycle number

using the ephemeris of Littlefair et al. (2008) was 39488. The eclipse times published

in Szkody et al. (2007) and Littlefair et al. (2008) were combined with this new eclipse

time and fit with a quadratic ephemeris in the form of

Tmid(HJD) = T0(HJD) + PorbE + CE2, (C.1)

where Tmid, E, Porb and T0 are the same as for Equation 3.1, and C is the change

in orbital period per cycle. This yielded values of T0(HJD) = 53858.356166(18),

Porb = 0.054240648(4)d and C = (3.9 ± 0.4) × 10−12d hr−2. From this, Ṗ was

calculated as follows.
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From Equation C.1, the instantaneous orbital period at cycle E, PE, is given by

PE =
dT

dE
= Porb + 2CE, (C.2)

which in turn gives

dPE

dT
= Ṗ =

dE

dT
× dPE

dE
=

2C

PE

. (C.3)

From Equation C.2, it can be seen that for the values of Porb and C obtained for

SDSS 1433, Porb ≈ PE. Substituting Porb and C into Equation C.3 therefore gives

Ṗ = (5.2± 0.5)× 10−8 days yr−1.
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Paczyński B., 1971, ARA&A, 9, 183

Paczynski B., 1976, in Eggleton P., Mitton S., Whelan J., eds, Structure and Evo-

lution of Close Binary Systems Vol. 73 of IAU Symposium, Common Envelope

Binaries. p. 75

Paczynski B., Sienkiewicz R., 1981, ApJL, 248, L27

Panei J. A., Althaus L. G., Benvenuto O. G., 2000, A&A, 353, 970



BIBLIOGRAPHY 206
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Zorotovic M., Schreiber M. R., Gänsicke B. T., 2011, A&A, 536, A42



�� ���� ��� �	��
� ��� ��� �	 ���	

214


