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Summary

The accurate determination of the masses of cataclysmic variable stars is critical

to our understanding of their origin, evolution and behaviour. Observations of

cataclysmic variables also afford an excellent opportunity to constrain theoretical

physical models of the accretion discs housed in these systems. In particular, the

brightness distributions of the accretion discs of eclipsing systems can be mapped

at a spatial resolution unachievable in any other astrophysical situation. This thesis

addresses both of these important topics via the analysis of the light curves of

six eclipsing dwarf novæ, obtained using ultracam, a novel high-speed imaging

photometer.

The physical parameters of the eclipsing dwarf novæ OU Vir, XZ Eri and DV UMa

are determined from timings of the white dwarf and bright spot eclipses. For XZ Eri

and DV UMa the physical characteristics are also calculated using a parameterized

model of the eclipse, and the results from the two techniques critically compared.

This work marks the first accurate determination of the system parameters of both

OU Vir and XZ Eri. The mass of the secondary star in XZ Eri is found to be close

to the upper limit on the mass of a brown dwarf.

The brightness distributions of the accretion discs of the six eclipsing dwarf novæ

OU Vir, XZ Eri, DV UMa, GY Cnc, IR Com and HT Cas are determined using an

eclipse mapping technique. The accretion discs of the first five objects are undetected

in the observations, as expected for short-period quiescent dwarf novæ with low mass

transfer rates. The observations of HT Cas, however, show significant changes in the

brightness distribution of the quiescent accretion disc between 2002 September and

2003 October, which are related to the overall system brightness. These differences

are caused by variations both in the rate of mass transfer from the secondary star

and through the accretion disc. The disc colours indicate that it is optically thin in
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both its inner and outer regions. I estimate the white dwarf temperature of HT Cas

to be 15 000 ± 1000 K in 2002 and 14 000 ± 1000 K in 2003.
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Chapter 1

Introduction

Context—

“On the evening of December 15th, 1855, I remarked . . . an object

shining as a star of the ninth magnitude, with a very blue planetary light,

which I have never seen before during the five years that my attention

has been directed to this quarter of the heavens. On the next fine night,

Dec. 18th, it was certainly fainter than on the 15th by half a magnitude

or more. Since that date I have not had an opportunity of examining it

till last evening, January 10th, when its brightness was not greater than

that of stars of the twelfth magnitude.”

This description, by J. R. Hind (1856), marked the discovery of a new class of

variable star—the dwarf novæ. The star was soon christened U Geminorium, and

in subsequent years became an exemplar of its type. Significantly, Hind noted that

the object appeared very blue, implying high temperatures, which differentiated

it from other variables such as Algol (an eclipsing binary) and S Cancri (a Mira

1
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variable). Furthermore, U Gem varied seemingly at random, a fact later bemoaned

by Parkhurst (1897): “Predictions with regard to it can better be made after the

fact.”

The U Gem stars eventually became known as dwarf novæ (Payne-Gaposchkin &

Gaposchkin, 1938), by comparison to the even more spectacular novæ which have

been observed since antiquity, and are now called classical, or old, novæ. These

objects now form part of the group of stars referred to as the cataclysmic variables.

The currently accepted model of cataclysmic variables was originally developed by

Kraft (1959, 1962), who proposed that

“. . . all members of this group are spectroscopic binaries of short pe-

riod. . . . the blue stars in these systems are probably white dwarfs. The

masses of the red components and their spectra . . . seem consistent with

a star of mass ∼ 1 M⊙. . . . the red stars overflow their lobes of the inner

Lagrangian surface; the ejected material forms, in part, a ring, or disc,

surrounding the blue star.”

This model has subsequently been expanded on (Warner & Nather, 1971; Smak,

1971), but remains essentially valid. In fact, any system which fits this description

can accurately be described as a cataclysmic variable.

1.1 The canonical scheme

Cataclysmic variable stars (CVs) are semi-detached binary systems, with orbital

periods of a few hours. The secondary star (of mass M2), usually a main-sequence

star, transfers material to the white dwarf primary (of mass M1). In non-magnetic

systems (in which the magnetic field of the white dwarf is too weak to affect the



ULTRACAM PHOTOMETRY OF ECLIPSING CVS 3

Figure 1.1: An artist’s impression of a non-magnetic CV, with the red dwarf sec-
ondary, gas stream, accretion disc and white dwarf primary marked.

accretion flow), the material is transferred via a gas stream, and then spirals round

the primary star, forming an accretion disc. The collision of the gas stream with the

accretion disc forms a so-called ‘bright spot,’ a shock-heated region of emission at the

edge of the disc. At the inner edge of the accretion disc, the disc material, orbiting in

Keplerian orbits, is decelerated to match the surface velocity of the white dwarf in a

boundary layer. If the white dwarf has a significant magnetic field, however, the disc

and boundary layer can be partially (in the case of intermediate polars) or totally (in

the case of polars) disrupted and the accreting material instead flows along magnetic

field lines onto the surface of the primary star (see § 1.3.4). Figure 1.1 shows an

artist’s impression of a non-magnetic CV, with the main features labelled.
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The name cataclysmic comes from the violent but non-destructive outbursts that

first drew attention to these objects (see § 1.3.1). These periodic outbursts mean that

monitoring of CVs is a popular and fruitful task among many amateur astronomers.

In systems which are inclined at large angles to our line of sight (i & 70◦), eclipses

of the various components occur, which can lead to fine structure in the eclipse

morphology. Eclipses of the white dwarf and bright spot are sharp (of the order of

tens of seconds), due to the compact nature of these regions, and are superimposed

on the more gradual eclipse of the extended accretion disc. As the bright spot rotates

into view, it can give rise to an increase in the observed flux, resulting in an ‘orbital

hump’ in the light curve.

1.2 The Roche-lobe

The orbital separation a of the binary components is, from Newton’s form of Kepler’s

third law, a function of the mass of each component and the orbital period, Porb:

a3 =
(M1 + M2)GP 2

orb

4π2
, (1.1)

where G is the gravitational constant. Given that the masses of the stellar compo-

nents of CVs are approximately solar, and that the orbital periods are of the order

a few hours, equation 1.1 implies binary separations of the order of one solar radius.

Such short orbital periods and close proximity mean that tidal forces from the

gravitational field of the primary and centrifugal forces from the rotation cause the

secondary star in CVs to be distorted into a teardrop shape from the spherical

shape that an isolated star would assume. These tidal forces also ensure that the

secondary is tidally locked: it rotates at the same rate as it orbits. The time-scale

for synchronization is short, as material flowing into and out of the tidal bulge will
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To Earth

φ

i

z

x

y

r

Figure 1.2: The Cartesian co-ordinate system used throughout this thesis. The
frame is co-rotating with the binary system, with the primary star at the origin.
The x -axis is the line joining the centres of the two stars, with x increasing towards
the secondary; the y-axis is in the binary plane, perpendicular to the x -axis and in
the direction of orbital motion; and the z -axis is perpendicular to the binary plane.
i denotes the orbital inclination, φ the orbital phase and r is the length of the vector
pointing towards Earth.

obviously expend a great deal of energy in doing so. In contrast, the small radius

of the primary means that it remains effectively immune from such forces and its

shape remains spherical.

Before going into the details of the Roche geometry, I first define a co-ordinate

system to use. As is usual, I use a set of right-handed Cartesian co-ordinates, with

the x -axis being defined as the line joining the centres of the two stars; the y-axis

is in the orbital plane, perpendicular to the x -axis and in the direction of orbital

motion; and the z -axis is perpendicular to the binary plane. This co-ordinate system

is illustrated in figure 1.2.

The total potential of the system is given by the sum of the gravitational potentials

of the two stars and the effective potential of the centrifugal force. In the above co-

ordinate system, the total potential is therefore (Kruszewski, 1966; Pringle, 1985;
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Frank, King, & Raine, 1985)

Φ = −GM1

aR1

− GM2

aR2

− 2π2a2

P 2
orb

[

(

x − M2

M1 + M2

)2

+ y2

]

, (1.2)

where R1 and R2 are the distances from the relevant star and y and x are the

distances along the relevant axes, all in units of the orbital separation a.

Contours of equal potential, Φ = const, are known as Roche equipotentials. The

shapes of these equipotentials are functions only of the mass ratio1 q = M2/M1, and

their scale depends on the orbital separation. The Lagrangian points 1–5 (L1 . . . L5),

first discovered in 1772 by Lagrange, satisfy

∂Φ

∂(x, y, z)
= 0, (1.3)

so a test particle at a Lagrangian point experiences no net force. As figure 1.3

illustrates, this is an unstable equilibrium, as the Lagrangian points are potential

maxima.

The largest closed equipotentials of each component meet at the inner Lagrangian

point L1 (see figure 1.3). The surface defined for each component by this equipo-

tential is called the Roche-lobe of that star; the potential defining the Roche-lobe

is known as the critical potential. Once the Roche-lobe is filled, equation 1.3 shows

that the material at the L1 point can easily transfer to the other star (see § 1.5.1),

with the initial impetus being given by the gas pressure of the secondary star’s

atmosphere.

It is frequently useful to use the volume radius of the Roche-lobe RL as a measure

of the size of the secondary. This is defined as the radius of the sphere that would

1Occasionally I will refer to mass ratios > 1. In these cases I remain consistent with the
definition of the secondary star being the mass donor.
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Figure 1.3: Different representations of the Roche potential. The potential scale is
normalised such that the potential at the L1 point is −1.0. The orange surface is
a ‘rubber-sheet’ representation of the Roche potential. The two deep depressions
correspond to the two stars. This surface is colour–coded: darker colours indicate
a more negative potential. The black grid superimposed on this surface shows the
potential on lines of equal x - and y-values. The blue plane below this shows the
same potential, but in two dimensions. The black curves superimposed on this plane
are Roche equipotentials. The ‘critical potential’ on which the L1 point lies is one
of them (the figure of eight). All the Lagrangian points are marked, as are the
positions of the primary and secondary stars. The mass ratio q is 0.175 and the
orbital period is 1.74 hours.
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Figure 1.4: Different types of close binary systems. From left: detached binaries have
both components within their Roche-lobes (e.g. NN Ser); semi-detached binaries
(including all CVs) have only one component within its Roche-lobe, the other fills
its Roche-lobe and can transfer mass to the detached star; in contact binaries both
stars overfill their Roche-lobes (e.g. W UMa stars). From Hellier (2001).

have the same volume as the Roche-lobe (Eggleton, 1983):

RL =
0.49aq

2

3

0.6q
2

3 + ln
(

1 + q
1

3

) , 0 < q < ∞ (1.4)

which is accurate to better than 1 per cent.

I have previously stated that CVs are ‘semi-detached binary systems.’ These are a

sub-type of binary stars known collectively as ‘close binary systems.’ The defining

characteristic of close binary stars is the presence of an interaction between the two

components other than that of gravity. Alternatively and equivalently, close binaries

can be defined as systems in which the two stars affect each others’ evolution. This

interaction can take the form of irradiation of one star by the other, or as in the

case of CVs, mass being transferred from one star to the other. Close binaries

come in three flavours, illustrated in figure 1.4: detached binaries have both stellar

components contained within their respective Roche-lobes; semi-detached binary

stars (including all CVs) have only one component within its Roche lobe, the other

fills its Roche-lobe and can transfer mass to the detached star; in the case of contact

binaries both stars overfill their Roche-lobes.
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1.3 Classification of cataclysmic variables

The classification of CVs is rooted in the historical observations of these objects,

which concentrated, for obvious reasons, on the spectacular outbursts that char-

acterise these stars and lend them their name. The amplitude and duration of

outbursts were obvious parameters by which to classify CVs in the past, and by-

and-large remain so today.

1.3.1 Classical and recurrent novæ

The novæ that first drew the eye to CVs are dramatic increases in brightness of these

stars. The amplitude of these eruptions ranges between 6 and ∼ 19 magnitudes, and

last for a few days to years. These eruptions are of such magnitude that to ancient

astronomers they appeared to be new stars. Ancient Chinese astronomers dubbed

them ‘guest stars,’ whereas in the West they became known as novæ stella.

Classical novæ have by definition only been observed to go nova once. These are

further subdivided on the basis of their duration into fast novæ and slow novæ

(which can last for years). The nova duration is strongly correlated with the eruption

amplitude—the fastest novæ also have the greatest amplitudes.

Recurrent novæ are classical novæ that have been observed to erupt more than

once. The lack of definite novæ recurrences from historical records (Duerbeck, 1992)

implies that, in general, the recurrence time is > 1000 years (Warner, 1995, page

258). The ejection, at high velocity, of a substantial shell from recurrent novæ

permits them to be distinguished from dwarf novæ which do not emit such a shell.

(Dwarf novæ may, however, have an enhanced stellar wind during outburst.)

The nova eruption is thought to be due to the accumulation of hydrogen-rich material

from the accretion disc on the surface of the white dwarf. As material is accumu-
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lated, the temperature and density of this layer eventually become high enough for

nuclear reactions to occur. Since the accreted material is degenerate, the pressure is

independent of temperature2 and a thermonuclear runaway occurs in the accreted

layer of hydrogen (the white dwarf itself is mainly composed of carbon and oxygen).

An exponential increase in energy generation, the nova eruption, occurs until the

Fermi temperature3 is reached, and the degeneracy is lifted.

1.3.2 Dwarf novæ

The outbursts (discussed in more detail in § 1.5.3) that characterise dwarf novæ are

rather less in amplitude (typically between two and five magnitudes) than those of

novæ, hence the term dwarf novæ. Outbursts typically last for about a week, with

the interval between outbursts (which varies from ten days to many years) being

correlated with their duration. Both the amplitude and duration of an outburst

have well defined time-scales for a particular object. The light curve of SS Cyg,

the brightest and one of the best-studied dwarf novæ, is shown in figure 1.5, over a

period of ten years.

There exist three distinct subtypes of dwarf novæ:

1. Z Cam stars have light curves that show periods of rapid outburst activity

interspersed with standstills, periods of constant brightness about 0.7 magni-

tudes below maximum light. These standstills last between tens of days and

2Degeneracy pressure arises from the fact that when electrons are compressed into a very small
volume, Heisenberg’s uncertainty principle means that since their positions are well-known, their
momenta must increase (since the Pauli exclusion principle states that two electrons cannot occupy
exactly the same state, the momentum of one of the pair is forced to increase). The increased
momenta of the electrons results in a pressure, supporting, in this case, the atmosphere of the
white dwarf against the pull of gravity. As degeneracy pressure arises from a quantum mechanical
effect, it is independent of temperature.

3The Fermi temperature is the temperature corresponding to the maximum energy a degenerate
electron can have. Above the Fermi temperature the momenta of the electrons due to their thermal
energy alone is sufficient to satisfy the Heisenberg uncertainty principle.
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Figure 1.5: The ten-year light curve of SS Cyg, showing regular outbursts. Compiled
by the American Association of Variable Star Observers (AAVSO), and reproduced
from Hellier (2001). Tick-marks are at 100 day intervals.

years. It is believed that Z Cam stars have mass transfer rates close to that re-

quired to maintain the disc in permanent outburst, with occasional changes in

the rate of mass transfer from the secondary star causing the onset of outbursts

and subsequent return to standstill.

2. SU UMa stars exhibit superoutbursts in addition to regular outbursts (see

§ 1.5.4). These superoutbursts are approximately 0.7 magnitudes brighter

than normal outbursts, of longer duration and somewhat more regular. They

often appear to be triggered by normal outbursts, as a pause before maximum

superoutburst brightness is achieved reveals (Warner, 1995, page 188).

SU UMa stars have another unique characteristic of their light curves—the

superhump. These are periodic humps in the light curves of dwarf novæ near

the maximum of superoutburst. Superhumps have periods of a few percent

longer than the orbital cycle, and their amplitude appears to be independent

of the orbital inclination. SU UMa stars are discussed in more detail in § 1.5.4.

3. U Gem stars are the dwarf novæ that are neither Z Cam nor SU UMa stars.
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Figure 1.6: An artist’s impression of a polar. Image used by the kind permission of
Mark A. Garlick.

Figure 1.7: An artist’s impression of an intermediate polar. Image used by the kind
permission of Mark A. Garlick.
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1.3.3 Novalikes

Historically, nova-like variables were classified as such because they were observed to

be spectroscopically similar to the remnants of old novæ, but had not been observed

(yet) to undergo a nova eruption. Old novæ are also classed as novalikes, and the

category contains all CVs with mass transfer rates sufficiently high to maintain the

disc in permanent outburst (see § 1.5.3).

1.3.4 Magnetic CVs

If the white dwarf has a strong magnetic field the accretion process can be signifi-

cantly affected. Depending on the strength of the field, the gas stream and accretion

disc can be partially or totally disrupted.

Polars, otherwise known as AM Her stars, are those CVs with the strongest magnetic

fields (typically a few tens of MGauss). The magnetic field of the primary is so strong

that the white dwarf’s rotation is tidally locked to the orbital period (i.e. the primary

is phase-locked or rotates synchronously) and the gas stream is disrupted, splitting

in two and flowing along the magnetic field lines to the white dwarf (figure 1.6).

Synchronous rotation (at least in the long-term; nova eruptions can temporarily

knock the system out of synchronization) is the defining characteristic of polars.

Intermediate polars have significant magnetic fields that are not strong enough to

entirely disrupt the accretion process. If the field is of such a strength that the gas

stream becomes attached to the field lines at a radius greater than the minimum

circularisation radius (Verbunt & Rappaport, 1988; see § 1.5.1) then a disc cannot

form. If the field is weaker and material begins to follow the field lines within this

radius, then a truncated disc structure is formed instead (figure 1.7).
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Intermediate polars and polars may be observationally distinguished due to asyn-

chronous rotation of the white dwarf manifesting itself in the form of periodicities

in the light curves of intermediate polars.

1.4 Cataclysmic variable evolution

Single star evolutionary theory predicts that white dwarfs form from the cores of red

giant stars. The radii of red giants are typically between 50 to 500 R⊙. How then

do we reconcile the orbital separations found in typical CVs of approximately 1 R⊙

with the giant progenitor stars of CVs? The answer is that the orbital separations

of CVs shrink over their lifetime as they evolve, from initial separations greater than

the radii of their progenitor stars to the separations that we observe today. Proper

consideration of the effects of angular momentum is crucial to a complete under-

standing of many stages of CV evolution, so I begin this section with a discussion

of the mechanisms of angular momentum loss in CVs.

1.4.1 Angular momentum loss

The total orbital angular momentum of the system J is given by

J = M1a1
2πa1

Porb

+ M2a2
2πa2

Porb

, (1.5)

where a1 and a2 are the distances of the primary and secondary stars, respectively,

from the centre of mass of the system. Since a = a1 + a2, M = M1 + M2 and

a1M1 = a2M2, using Kepler’s third law (equation 1.1) leads to

J = M1M2

(

Ga

M

)
1

2

. (1.6)



ULTRACAM PHOTOMETRY OF ECLIPSING CVS 15

Differentiating equation 1.6 logarithmically with respect to time and assuming that

no mass is lost from the system as a whole (i.e. Ṁ = 0) gives

ȧ

a
= 2

J̇

J
− 2

Ṁ2

M2

(

1 − M2

M1

)

, (1.7)

where the dot indicates the rate of change with respect to time (i.e. Ṁ2 is the

secondary’s rate of change of mass).

The above expression gives the response of the orbital separation to mass transfer

and angular momentum loss. One can use the approximate relation of Paczyński

(1971) for the volume radius of the Roche lobe

RL = 0.462a

(

M2

M

)
1

3

, 0 < q < 0.3 (1.8)

which is accurate to 2 per cent, with equation 1.7 to derive a similar expression

for the response of the Roche-lobe: logarithmically differentiating equation 1.8 and

combining with equation 1.7 gives

ṘL

RL

= 2
J̇

J
+

(

2
M2

M1

− 5

3

)

Ṁ2

M2

. (1.9)

The above is equally valid if the usual rôles of the primary and secondary stars

are reversed, that is, if the primary is the component losing mass. The relevant

subscripts in equations 1.5–1.9 merely need to be reversed (i.e. M2 → M1 etcetera).

Angular momentum loss in CVs is believed to occur via two main mechanisms:

magnetic braking and gravitational radiation.
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Magnetic braking

The two essential components of magnetic braking are an ionized stellar wind and

a stellar magnetic field. We expect (Basri, 1987) both of these to occur for the

secondary stars of CVs.

The ionized stellar wind from the secondary is forced to co-rotate with the star due

to coupling with the magnetic field lines. The stellar wind thus exerts a braking

torque on the rotation of the secondary star. As tidal forces keep the secondary’s

rotation synchronous with the orbital motion, the energy effectively comes from the

orbital motion. The orbital separation therefore shrinks due to the loss of angular

momentum to the stellar wind.

The standard picture of CV evolution (Rappaport et al., 1983) has magnetic braking

as the main source of angular momentum loss until the secondary star becomes fully

convective, whereupon angular momentum loss due to magnetic braking ceases (see

also § 1.4.7). However, Andronov et al. (2003) showed that if the angular momentum

loss properties of the secondary stars in CVs are identical to those of single (or

detached binary) stars (Basri, 1987), then the time-scale for angular momentum loss

due to magnetic braking is two orders of magnitude greater than for the ‘standard’

model. This implies a much longer evolutionary time-scale for CVs. The data used

by Basri (1987), however, only includes systems with orbital periods & 17 hr: it is

not clear that the results can be extrapolated to systems with shorter periods such as

most CVs. In a recent paper, Andronov & Pinsonneault (2004) found that chemical

evolution of the secondary star affects its angular momentum loss properties. The

result is that the angular momentum loss rate in CV secondaries may be greater

than that of single stars, although it is still predicted to be significantly less than in

the standard picture. The exact form of the angular momentum loss due to magnetic

braking remains uncertain.
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Gravitation radiation

The small orbital separation of many CVs makes gravitational radiation a signifi-

cant source of angular momentum loss for these systems. The rate of the angular

momentum loss J̇ is given by (Landau & Lifschitz, 1958)

J̇

J
= −32G3

5c5

M1M2(M1 + M2)

a4
. (1.10)

Gravitational radiation may be the dominant mechanism for some short-period

dwarf novæ and polars (Warner, 1995, page 447). Observations of orbital period

decay in binary pulsars (e.g. PSR 1913+16; Taylor & Weisberg, 1982) has provided

convincing observational evidence for the existence of gravitational radiation.

1.4.2 Pre-common envelope evolution

The progenitor stars of CVs stars start life as members of a wide binary system. The

more massive member of the binary naturally evolves to the red giant phase more

rapidly4, expands to fill its Roche-lobe and mass transfer (from the primary to the

secondary star) begins. Mass is being transferred farther from the centre of mass,

and so in order to conserve angular momentum (i.e. J̇ = 0), the orbital separation

decreases (equation 1.7) and the Roche-lobe shrinks in size (equation 1.9).

The radius of a giant star is almost entirely governed by the mass of its degenerate

core; it does not depend on the mass of its outer atmosphere. It follows that mass

transfer from the primary to the secondary star is unstable, as no stabilising reduc-

tion in radius of the mass donor occurs. Mass transfer proceeds on the dynamical

4Since luminosity ∝ M3 and fuel reserves ∝ M , the (main-sequence) lifetime ∝ 1/M2
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time scale (Warner, 1995, page 450): Ṁ ∼ M/τdyn, where

τdyn ∼
(

R3

GM

)
1

2

. (1.11)

However, the mass-receiving star can only adjust its structure on the thermal, or

Kelvin-Helmholtz time scale (Warner, 1995, page 450):

τKH =
GM2

RL
≫ τdyn, (1.12)

where L is the stellar luminosity. The end result is runaway mass transfer leading to

the transferred material forming an extended common envelope around both stars.

1.4.3 Common envelope evolution

The common envelope phase of CV evolution is when the vast majority of the orbital

separation shrinkage in CVs occurs. The pre-CV is effectively orbiting within the

atmosphere of a red giant. The drag the stars encounter within the common envelope

results in orbital angular momentum being deposited within the envelope. The

consequent loss of energy from the orbit shrinks the binary separation to ∼ 1 R⊙ in

approximately 1000 years. The energy injected into the common envelope causes it

to be ejected as a planetary nebula, revealing a still-detached pre-cataclysmic star

consisting of a white dwarf primary and a red dwarf secondary star5.

1.4.4 Pre-cataclysmic variable evolution

Evolution into contact and the formation of a CV occur due to angular momentum

loss from the system. Equation 1.9 illustrates that for zero angular momentum loss

5The endpoint of the common envelope phase can also be a coalesced star, or a detached binary
whose time-scale for evolution into contact is so long that contact will never be achieved.
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(J̇ = 0) the minimum radius of the secondary’s Roche-lobe occurs for q = 5/6.

Despite this, mass transfer clearly occurs in CVs, most of which have q < 5/6. To

drive mass transfer hence requires the loss of angular momentum from the system

(J̇ < 0).

For pre-CVs, magnetic braking is by far the most significant source of angular mo-

mentum loss. For the more massive secondary stars with M2 & 1 M⊙, evolution

of the secondary and consequent expansion may cause it to come into contact with

its Roche-lobe before angular momentum loss does. Pylyser & Savonije (1988a,b)

found that contact due to evolution of the secondary star leads to mass transfer

driven by expansion of the secondary’s envelope, an increasing orbital period (and

separation) and, ultimately, a detached system (occurring when all the secondary’s

envelope has been lost). In this thesis, I concentrate on the more common (as for

most CV secondaries M2 ≪ 1 M⊙) scenario of angular momentum loss.

1.4.5 Cataclysmic variable evolution

The evolution of CVs relies on mechanisms of angular momentum loss in order to

drive mass transfer. In the case of CVs, mass transfer occurs from the secondary

star to the primary. Mass is therefore moving away from the centre of mass and

from equations 1.7 and 1.9 if angular momentum is conserved (J̇ = 0), for q <

5/6 (i.e. most CVs), this results in the orbital separation and volume radius of

the secondary’s Roche-lobe increasing, cutting off mass transfer. A mechanism of

angular momentum loss (J̇ < 0) is therefore necessary for long-term mass transfer to

occur. Mass transfer through angular momentum loss must lead to the volume radius

of the secondary star’s Roche-lobe and the orbital separation shrinking, resulting

(equation 1.1) in the system evolving to shorter orbital periods.

For mass transfer to be stable, the secondary must be able to adjust its radius
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quickly enough to remain within its Roche-lobe, i.e. (Warner, 1995, page 458)

ξ =
∂ ln R2

∂ ln M2

>
d ln RL

d ln M2

. (1.13)

Equations 1.9 and 1.13, for conservative mass transfer (J̇ = 0), require

q <
1

2
ξ +

5

6
(1.14)

for stable mass transfer to occur. For M2 > M⊙, where τKH < τML (where τML is

the time scale for mass loss) ξ = 0.87 (Warner, 1995, page 458), this leads to the

condition q < 1.26 for mass transfer from a main-sequence donor star to be stable.

For M2 > 0.8 M⊙, τKH > τML and ξ = −1/3 (Paczyński, 1965), the corresponding

condition is q < 2/3. If this condition is not satisfied (in either case) then mass

transfer is unstable and will proceed on the dynamical time-scale (equation 1.11),

possibly leading to a second common envelope phase.

It is easiest to think of the secular evolution of CVs as occurring in a stepwise way

(although the process is of course continuous in practice). First, mass is transferred

from the secondary star to the primary. This causes, through equations 1.7 and 1.9,

the orbital separation and secondary star’s Roche-lobe to increase in size. The radius

of the secondary star becomes smaller in response to its reduced mass. Angular

momentum loss from the system then decreases both the orbital separation and the

size of the secondary star’s Roche-lobe until mass transfer can re-commence at a

smaller orbital separation than previously.

A schematic demonstrating the important stages in the evolution of a CV is shown

in figure 1.8.
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Figure 1.8: A schematic demonstrating the important stages in the evolution of a
CV. The primary star is on the left and the secondary on the right. From Littlefair
(2001).
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Figure 1.9: The orbital period distribution of CVs for periods less than 12 hours,
compiled from Ritter & Kolb (1998).

1.4.6 The orbital period distribution

As one of the most easily, and most accurately, determined physical parameters, the

distribution of the orbital periods of CVs potentially provides a useful window into

their evolution. The orbital period distribution of CVs, shown in figure 1.9, has

three main features: the minimum period, the long-period cut-off and the period

gap.

The minimum period

There is an observed minimum period for CVs of approximately 78 minutes6. This

is due to the secondary star becoming degenerate for masses below ∼ 0.08 M⊙. The

degenerate secondary effectively becomes a very low mass white dwarf, and as such

(if in thermal equilibrium) will obey the mass-radius relationship for a white dwarf,

6Those systems plotted on figure 1.9 with an orbital period of less than this are AM CVn sys-
tems, whose secondary stars are composed chiefly of helium, leading to a more compact secondary
star.
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for instance the analytical approximation to the Hamada-Salpeter relation (Hamada

& Salpeter, 1961) of Nauenberg (1972):

R = 7.795 × 106

[

(

1.44 M⊙

M

)
2

3

−
(

M

1.44 M⊙

)
2

3

]
1

2

m. (1.15)

Equation 1.15 illustrates that decreasing the mass of a degenerate secondary leads to

expansion of its radius. For q < 2/3 (see equation 1.14 and the following discussion),

this situation is, surprisingly enough, stable (Warner, 1995, pages 459 & 462).

Once again, it is easiest to think of this continuous process as occurring in two

stages: as q < 5/6, mass transfer leads to the orbital separation and the size of the

secondary’s Roche-lobe increasing (equations 1.7 and 1.9). The continuing mecha-

nisms of orbital angular momentum loss then decrease the orbital separation and

the secondary’s Roche-lobe until mass transfer can re-commence, but the secondary

has in the meantime expanded in response to its mass loss, so mass transfer begins

again at a slightly larger separation than before.

The long-period cut-off

Above an orbital period of about six hours the number of CVs declines, with very few

observed with periods > 12 hours. As seen in § 1.4.5, stable mass transfer requires

that q < 1.26. Since the mass-accreting star is a white dwarf, it has a maximum mass

of 1.44 M⊙ (the Chandrasekhar mass). Kepler’s third law (equation 1.1) requires

that the orbital separation increases as the orbital period increases. This results

(equation 1.4) in the size of the Roche-lobe, and therefore the mass of the (dwarf)

star required to fill it, increasing. The constraint on the maximum mass of the white

dwarf thus leads to an upper limit on the orbital period of ∼ 12 hours. The few

systems with Porb ≥ 12 hours have evolved secondaries. The fact that few white
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dwarfs actually have the Chandrasekhar mass naturally explains the gradual decline

in the number of systems with Porb & 6 hours.

The period gap

Between 2.2 ≤ Porb ≤ 2.8 hours there is a significant deficiency of systems. (Polars

do not show this gap, but intermediate polars do.) A number of possibilities present

themselves as explanations for this period gap. As shown in § 1.4, CVs evolve to

shorter orbital periods due to angular momentum loss. This could imply that the

CVs above and below the period gap are actually two separate populations. The

upper bound of the period gap would then represent some minimum period for the

long-period population, and the lower bound a maximum period for the short-period

CVs. To produce a minimum orbital period of about three hours the secondary stars

would have to be degenerate and of very low luminosity (Verbunt, 1984). This is

not supported observationally, however: such stars are observed to have normal

main-sequence luminosities (Warner, 1995, page 465).

The favoured scenario is that CVs evolve into the period gap from a single popu-

lation, but cease mass transfer whilst they are in it. This obviously requires some

sort of mechanism to halt mass transfer at the upper bound of the period gap: the

disrupted magnetic braking model, the subject of the following section.

1.4.7 The disrupted magnetic braking model

The period gap is thought to be a consequence of a change in the internal structure

of the secondary star. As noted by Robinson et al. (1981), at an orbital period of

around three hours, which corresponds to a secondary mass of ∼ 0.25 M⊙ (Smith

& Dhillon, 1998), the internal structure of the secondary changes from a radiative
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core (M2 > 0.3 M⊙) to a convective core (M2 < 0.3 M⊙). It is suspected that this

interferes with the dynamo-generated magnetic field of the secondary (King, 1988),

disrupting magnetic braking. Whatever the mechanism of the reduction of magnetic

braking, if it results in τKH < τMT, where τMT is the time-scale for mass transfer, it

gives the secondary time to readjust its structure so that it can shrink back within

its Roche-lobe, causing mass transfer to cease and establishing the upper edge of

the period gap. (Remember that when mass transfer is occurring the secondary is

larger than its equilibrium main-sequence radius; it is filling its Roche-lobe.)

Note that this explanation is rather speculative, since it assumes that magnetic

braking is the dominant cause of angular momentum loss in systems above the

period gap. Andronov et al. (2003, see also § 1.4.1) point out that it is not clear

that this is true and that there is no observational evidence for a sudden cessation

in magnetic braking at the point where the secondary switches from a radiative to

a convective core.

1.5 The gas stream and accretion disc

The presence of accretion discs in many CVs accounts for much of the interest

in these systems. Accretion discs are an incredibly widespread astrophysical phe-

nomenon, occurring in a variety of locations and scales. They are present around

young stars (T Tauri stars) where they assist the formation of the protostar by re-

moving angular momentum from material in the collapsing gas cloud. They are also

thought to be involved in the formation of planetary systems. At the other extreme,

accretion discs fuel the cores of active galaxies, radiating the gravitational potential

energy lost by material as it falls towards a central massive black hole. Unfortu-

nately, however, accretion discs around young stars are shrouded by the dust and

gas from which these stars are forming, and those in the cores of active galaxies are
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not only frequently obscured by the surrounding dust, gas and stars, but are at great

distances. Additionally, the accretion discs present in CVs evolve more quickly than

those in either T Tauri stars or the cores of active galaxies. One final advantage

that observations of the discs in CVs have over those of T Tauri discs is that CV

discs are hotter, and therefore more luminous at optical wavelengths. It is in CVs,

therefore, specifically in eclipsing systems, that accretion discs are most profitably

observed.

1.5.1 Gas stream dynamics

From the inner Lagrangian point to the point where it impacts the disc, the gas

stream follows a ballistic trajectory, shown in figure 1.10. The equations of motion

for a point mass in a Cartesian co-ordinate system co-rotating with the binary as

described in § 1.2 are (e.g. Flannery, 1975; Dhillon, 1990):

ẍ =
GM1

r2
1

(x1 − x)

r1

+
GM2

r2
2

(x2 − x)

r2

+ 2ωẏ + ω2rcm
(x − xcm)

rcm

(1.16)

and

ÿ =
GM1

r2
1

(y1 − y)

r1

+
GM2

r2
2

(y2 − y)

r2

+ 2ωẋ + ω2rcm
(y − ycm)

rcm

, (1.17)

where the subscript ‘cm’ denotes the distance to the centre of mass of the system

and ω = 2π/Porb is the angular frequency. The first two terms in equations 1.16

and 1.17 are from the gravitational influence of the primary and secondary stars,

respectively; the third is from the Coriolis force and the fourth from the fictitious

centrifugal force.

The position of such a test particle at a given time is an example of the well-known

three-body problem. As there is no (known) explicit solution, the problem must

be solved by numerical integration. The position, velocity and acceleration of a
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test particle are calculated at time intervals ∆t. As this interval becomes smaller,

the calculation becomes more accurate, but more CPU-intensive. High accuracy is

necessary near the primary star, where the potential gradient is steep (see figure 1.3),

but wasteful where the potential is relatively flat. A good compromise can be

achieved by adjusting the time interval according to the relation

∆t = ∆tin

(

R

RL1

)2

, (1.18)

where ∆tin is the initial time interval and R and RL1 are the distances of the test

particle and L1 point from the primary star, respectively. This decreases the time

interval as a function of the square of the distance from the primary star, which is

appropriate since the force exerted on the particle by the gravitational attraction of

the primary also varies with the square of the distance from the star.

An additional constraint is that the energy of the particle is conserved along its

path, so that the quantity

EJ = ẋ2 + ẏ2 − 2Ω(x, y), (1.19)

where

Ω(x, y) =
1

2

[

M2R
2
2

M1 + M2

+
M1R

2
1

M1 + M2

]

+
M2

(M1 + M2)R2

+
M1

(M1 + M2)R1

, (1.20)

called the Jacobi energy, remains constant (Warner & Peters, 1972). In practice,

the Jacobi energy is subject to the constraint

∆EJ

EJ

< tol, (1.21)

where tol is the fractional accuracy required (typically 10−4).



28 CHAPTER 1. INTRODUCTION

From the constraint on the Jacobi energy, it follows that the stream cannot re-cross

the critical potential, and always approaches it with a low velocity. If the Jacobi

energy is not conserved for a given time-step calculation, then the time interval ∆t is

reduced by a factor of two and the step re-calculated until equation 1.19 is satisfied.

The accuracy of the calculation can be further improved by use of a second-order

Runge-Kutta technique. This involves calculating the acceleration of the particle at

the start and end of the time interval, and then applying the mean of these to the

particle over the time-step.

Due to its angular momentum, the gas stream will pass by the white dwarf and

eventually loop back around and collide with itself. This impact will give rise to

turbulent shocks which dissipate much of the kinetic energy of the stream. Angular

momentum, however, is not so easily lost and the material will therefore settle into

the lowest energy orbit for a given angular momentum: a circular one.

The minimum outer radius of the accretion disc can be derived by calculating the

radius around the white dwarf at which orbiting material has the same angular

momentum as material at the inner Lagrangian point. This circularisation radius

Rmin is given by (Verbunt & Rappaport, 1988, their equation 13):

Rmin ≈ 0.0883 + 0.04858 log q−1 + 0.11489 log2 q−1

−0.020475 log3 q−1 . 10−3 < q < 1 (1.22)

The maximum possible radius of the disc can be determined from consideration

of simple periodic particle orbits. Particle trajectories for radii approaching the

radius of the primary’s Roche lobe become significantly non-circular due to the

gravitational influence of the secondary star. Assuming that the largest orbit that

does not intersect with any others is the maximum radius of the accretion disc (this is
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sensible because larger orbits that intersect will dissipate energy and prevent growth

of the disc) gives the so-called tidal radius, Rtidal, an approximate relation for which

is (Paczyński, 1977; Warner, 1995, page 57)

Rtidal

a
=

0.6

1 + q
. 0.03 < q < 1 (1.23)

1.5.2 The radial temperature profile

The velocities of the material in the accretion disc can usually be assumed to be

negligibly different from Keplerian velocities, as at these distances from the primary

the gravitational influence of the secondary star is slight. Viscosity in the disc occurs

due to interaction between particles in slightly different orbits. Particles in smaller

orbits orbit faster than material further out, and via viscous interaction speed up

this outer material, transferring angular momentum to it, and vice versa. Angular

momentum is therefore transferred outwards in the disc, resulting in a net flow of

material inwards (Lynden-Bell & Pringle, 1974), driving accretion onto the white

dwarf.

If we assume that all the potential energy Ep lost by some mass m as it spirals

towards a mass M from an initial radius R to a radius R − dR is radiated away as

blackbody radiation, then the rate of energy release is

∆Ep = −GMṁ

(

1

R
− 1

R − dR

)

. (1.24)

If we assume that the annulus defined by the radii R and R−dR emits as a blackbody,

then we have

∆Ep = 4πR dR σT 4. (1.25)
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Figure 1.10: The trajectory of the gas stream for q = 0.15. The stream originates at
the inner Lagrangian point with a small initial velocity with respect to the binary
frame. The minimum circularisation radius (Verbunt & Rappaport, 1988, their
equation 13) is shown as the dashed circle, a disc radius of 0.4a is shown as a solid
line, the dot-dash line is the tidal radius (Paczyński, 1977) and the Roche-lobe of
the primary is the tear-drop shaped solid line. The position of the white dwarf at
the origin is marked with an open circle, as is the inner Lagrangian point. The
secondary star is to the right of the frame. Note that the stream does not re-cross
the Roche-lobe.
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Combining equations 1.24 and 1.25 and setting R − dR ≈ R gives

T 4 =
GMṁ

4πR3σ
, (1.26)

i.e.

T ∝ R−3/4. (1.27)

This derivation neglects two effects. First, as material spirals to smaller radii its

Keplerian velocity increases, so some of the gravitational energy released goes into

the kinetic energy of the particles. Second, as material accretes onto the white dwarf,

it decelerates to the rotation speed of the white dwarf in a boundary layer between

the white dwarf and inner edge of the accretion disc. This deceleration results in

kinetic energy being converted into thermal energy. With these factors taken into

account, equation 1.26 becomes (Bath & Pringle, 1981; Horne & Cook, 1985)

T 4 =
3GMṁ

8πR3σ

(

√

1 − R1/R
)

, (1.28)

where R1 is the radius of the white dwarf.

In dwarf novæ in outburst and long-period novalikes, this simple R−3/4 radial tem-

perature profile is indeed observed by eclipse mapping experiments (Horne & Cook,

1985; Horne & Stiening, 1985; Rutten et al., 1992). In quiescent dwarf novæ a much

flatter profile is observed (e.g. Wood et al., 1989a). This is thought to be because

the disc does not achieve a steady state in quiescence (in a steady state the disc

surface density does not evolve with time; ∂Σ/∂t = 0; see the following section).

1.5.3 Outbursts and the disc instability model

Dwarf nova outbursts have been observed and studied for well over a century. Out-

bursts of U Gem were first discovered in 1855 (Hind, 1856). Unsurprisingly, early
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attempts to explain dwarf nova outbursts tried to associate them with novæ and

recurrent novæ. For several years the idea that dwarf novæ were just that, minia-

ture novæ eruptions, was popular. In this scenario the outbursts are caused by a

thermonuclear runaway of the hydrogen in the white dwarf envelope. Warner (1995,

page 167 on) gives an excellent summary of early models of dwarf novæ outbursts.

The disc instability model was proposed by Osaki (1974). It attributes dwarf novæ

outbursts to “sudden gravitational energy release due to intermittent accretion of

material onto the white dwarf component . . . from the surrounding disc.” This

intermittent accretion is triggered by an instability in the accretion disc. Osaki

suggested that the secondary star transfers material at a constant rate, which is

greater than the mass transfer rate through the disc. This would result in material

accumulating in the accretion disc until some critical density were reached, where-

upon the viscosity in the disc would increase greatly, enhancing the accretion rate

onto the white dwarf (see § 1.5.2). The viscous heating of the disc results in an

increase in the luminosity of the system. This follows from equation 1.28 and the

Stefan-Boltzmann equation:

L = 4πR2σT 4, (1.29)

which gives the bolometric luminosity of a blackbody of radius R and temperature

T , where σ = 5.67 × 10−8 Wm−2K−4 is the Stefan-Boltzmann constant.

Another consequence of the increase in the rate of angular momentum transportation

is the expansion of the accretion disc, due to the conservation of angular momentum.

Eclipse mapping of dwarf novæ during outburst has demonstrated this increase in

the size of the accretion disc (figure 1.11).
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Figure 1.11: A sequence of eclipse maps of the dwarf nova EX Dra showing the rise
(a–b) from quiescence (h) to maximum light (c), through the decline (d–f) to a low
brightness state (g) that the system enters before recovering its quiescent brightness.
The Roche-lobe and gas stream are shown as dotted lines, and the white dwarf at
the centre is marked with a cross. The scale is logarithmic, with brighter regions
indicated in black. From Baptista & Catalán (2001).
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The viscosity of accretion discs

The exact mechanism of viscosity in accretion discs is non-obvious. Simple molecular

viscosity is too weak to explain the rates of mass transfer through the disc necessary

to reproduce the observed behaviour of accretion discs. Turbulence in the accretion

disc could increase the viscosity, by causing globules of material to move to different

orbits, transporting angular momentum between orbits at different radii.

Shakura & Sunyaev (1973) characterised the turbulence by the alpha viscosity α.

The alpha viscosity parameterizes the efficiency of the mechanism of angular momen-

tum transport, and has a maximum7 of α = 1. The maximum size of the turbulent

eddies is of the order of the disc thickness, z0. The alpha viscosity prescription

allows the viscosity ν to be quantified as

ν = αcsz0, (1.30)

where cs is the sound velocity.

This parameterization of the viscosity allows theoretical models of accretions discs,

known as alpha discs, to be constructed by combining the alpha viscosity with the

equations of gas dynamics. This leads to (Shakura & Sunyaev, 1973; Warner, 1995,

page 47)

z0 ∝ r9/8, (1.31)

assuming that α is independent of radius. Equation 1.31 shows that alpha discs

are concave, flaring out at their outer edges. Alpha discs are also ‘thin discs,’ i.e.

their heights are small compared to their radii. Comparison of alpha disc models to

observations shows that during outburst, values for α range from approximately 0.1

7Shakura & Sunyaev (1973) point out that for α > 1 the turbulence is supersonic, leading to
rapid heating of the disc material and the subsequent reduction of the alpha viscosity to α ≪ 1.
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to 0.5, and during quiescence, from 0.01 to 0.05 (Mineshige & Wood, 1989; Warner,

1995, page 179; Hellier, 2001; Lasota, 2001; Schreiber, Hameury, & Lasota, 2003).

The disc instability model

The alpha viscosity itself gives no clue as to the cause of the turbulence. The key

to this was developed in the 1990s, and is based on magnetic instabilities resulting

in turbulence in the disc (Balbus & Hawley, 1991; Hawley & Balbus, 1991). Ionized

material in the disc couples to the magnetic field in the disc, which forces material

rotating more slowly (at larger radii) outwards and material rotating more quickly

(at smaller radii) inwards. This stretches the field lines, amplifying them, and

eventually leads to magnetic turbulence in the disc. The Balbus-Hawley or magneto-

rotational instability has recently been demonstrated in the laboratory (Sisan et al.,

2004).

The Balbus–Hawley instability provides a theoretical explanation of the trigger of

dwarf novæ outbursts, in that it only operates when material in the disc is ionized.

The disc of a dwarf nova in outburst is hot and highly viscous, whereas during

quiescence it is cold and less viscous. All that is now required is some mechanism

to cause heating of the disc in order to trigger the Balbus–Hawley instability and

subsequently an outburst.

This mechanism is the thermal instability. The line of thermal equilibrium in the

Σ − T plane, where Σ is the surface density of the material, is known as the ‘S-

curve’ (shown in figure 1.12). On the S-curve, heating from viscous forces balances

the radiation from the surface. A system located off this line of thermal equilibrium

will heat or cool, as appropriate, until equilibrium is established on the S-curve.

Not all equilibrium states are stable, however, only those that satisfy dT/dΣ > 0.

Those states with negative gradients (dT/dΣ < 0) are unstable: a small positive
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perturbation of Σ leads to an increase in T , which takes the state away from the S-

curve of thermal equilibrium. To regain stability the system would have to migrate

to lower T .

Consider first of all an unionized, cold annulus within an accretion disc. If the rate

of mass transfer into the unionized annulus is greater than the rate at which material

flows through it, it will inevitably begin to fill up, increasing the surface density. The

greater surface density of the disc results in an increase in the viscosity, which in turn

increases the temperature via viscous heating. The increase in viscosity also causes

the mass transfer rate through the annulus to increase. As unionized hydrogen has

a low opacity κ to radiation, and this is not strongly dependent on temperature, the

energy released by the viscosity will escape and the system will tend to stabilise itself

on the lower branch of the S-curve. If, however, the annulus becomes hot enough

(∼ 7000 K) for the hydrogen to become partially ionized, the situation changes.

Unlike unionized hydrogen, the opacity of partially ionized hydrogen has a strong

dependence on temperature: κ ∝ T 10. The temperature rise therefore causes a

massive increase in the opacity of the annulus, trapping the energy released by the

viscosity, and further increasing the temperature. Although the viscosity increase

means that the surface density of the region is being reduced, the effect this has on

the temperature increase is vastly outweighed by the increase in the opacity-trapped

energy.

Once the annulus is completely ionized, the opacity is no longer highly sensitive to

temperature, and the annulus settles into equilibrium at a much higher temperature

on the upper branch of the S-curve. The Balbus-Hawley instability can now kick in

as the magnetic field is able to couple to the ionized material in the annulus, and the

viscosity will increase. This means, however, that the rate of mass transfer through

the annulus is greater than the rate of mass transfer into it, so the surface density of

the annulus gradually decreases, and with it the temperature, until the hydrogen in
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the annulus becomes partially ionized again. The temperature-opacity dependence

returns, and the opacity rapidly drops as the temperature falls, until the hydrogen

becomes unionized and the viscosity returns to normal. This cycle is known as the

thermal limit cycle, and is illustrated in figure 1.12; see Warner (1995, page 173 on)

for a fuller discussion.

The thermal instability described above begins in a certain annulus and then pro-

ceeds to the rest of the disc by distributing hot material to adjacent annuli. This

heating wave can start either in the inner disc, in which case the resulting outburst is

known as inside-out, or in the outer disc, leading to an outside-in outburst. Which

type occurs depends on the mass transfer rate from the secondary star. At lower

mass transfer rates, the material has time to filter through the disc, and accumulates

at smaller radii. If the mass transfer rate from the secondary star is large, however,

the material tends to build up nearer the outer edge of the disc. In the former case,

an inside-out outburst results; in the latter, an outside-in. Inside-out outbursts tend

to have a slower rise to outburst maximum than outside-in outbursts. This is due

to three main factors:

1. Viscosity causes more material to flow inwards than outwards;

2. Inner radii have smaller surface densities (Σ ∝ R1.05, Cannizzo et al., 1988),

so there is less material to spread outwards;

3. Outer radii are larger, so the surface density of material moving to larger radii

is reduced, hampering the progress of the heating wave. Material travelling in-

wards has its surface density increased, thus aiding the progress of the heating

wave.
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Figure 1.12: The Σ − T relation and the resulting thermal limit cycle for dwarf
novæ. At point A, the dwarf nova is at quiescence, with a cool, unionized disc.
Material builds up in the disc, increasing the disc temperature, and the dwarf nova
moves to point B. Here, the hydrogen in the disc becomes partially ionized, leading
to a large opacity increase and subsequent runaway temperature increase to point
C—the dwarf nova enters outburst. At point C, the hydrogen has become fully
ionized, so the disc opacity becomes insensitive to temperature, halting the runaway
temperature increase. Enhanced mass transfer through the disc onto the white
dwarf due to the Balbus-Hawley instability leads to the surface density of the disc
decreasing, and with it the temperature, until the hydrogen begins to recombine at
point D. At this point the thermal instability begins to operate again, and the disc
rapidly cools to point A. The S-curve comprises the solid and dashed lines. From
Watson (2002).
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1.5.4 Superoutbursts and superhumps: SU UMa stars

The definition of an SU UMa star (see § 1.3.2) is a dwarf nova that also exhibits

superhumps. To date, no star has yet been found that exhibits superhumps but not

superoutbursts, or vice versa, so I shall presume that the presence of one of these

phenomena implies the other. The orbital period distribution of SU UMa stars is

pronounced: they all (with the exception of TU Men) lie below the period gap. It

is suspected that all dwarf novæ below the period gap are SU UMa stars (Warner,

1995, page 127).

The cause of superhumps is the precession of an elliptical disc (Vogt, 1982). The

precession period Pprec of such a disc will create a beat, or superhump, period Psh

with the orbital period Porb:

1

Psh

=
1

Porb

− 1

Pprec

. (1.32)

The origin of the elliptical disc is tidal resonances of particles in the outer disc with

the secondary star (Whitehurst, 1988; Whitehurst & King, 1991). Particles with

orbital periods in resonance with the orbital period of the secondary are forced, due

to the gravitational interaction with the secondary, to follow non-circular orbits (see

also § 1.5.1). The particles cannot, however, follow these orbits exactly, because they

intersect both with neighbouring circular orbits and themselves. The non-circular

orbit cannot be uniformly populated due to these self-interactions, so a precessing

arc of material is formed. Interactions between this arc and the disc itself are thought

to produce the superhump light (see figure 1.13).

1.5.5 Spiral shocks

Spiral shocks are another manifestation of the tidal influence of the secondary star
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Figure 1.13: The superhump light distribution across the disc of the SU UMa star
Z Cha during superoutburst. The primary is at the centre of the grid (which has
sides equal to the orbital separation) and the secondary off the grid at bottom right.
The superhump light originates from three regions at the rim of the disc where
particle orbits intersect. The plot has been produced by maximum-entropy eclipse
mapping, and is taken from O’Donoghue (1990).
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on the accretion disc. They are density waves formed in the disc when particles

in intersecting, non-circular orbits interact (Sawada et al., 1986a,b). The shock

waves form a two-armed spiral pattern in the disc and are capable of transporting

angular momentum through the disc without the need for viscosity (see § 1.5.3).

Spiral shocks were first detected in the outburst accretion disc of the dwarf nova

IP Peg (Steeghs et al., 1997, 1998) and have since been observed in many other

CVs, including V347 Pup (Still et al., 1998), EX Dra (Joergens et al., 2000), U Gem

(Groot, 2001) and WZ Sge (Baba et al., 2002). Until recently, spiral shocks had only

been observed in either outburst or a high state, but there is some recent evidence

for spiral shocks in the quiescent discs of IP Peg (Neustroev et al., 2002) and U Gem

(Morales-Rueda, 2004; Unda-Sanzana, 2005).

1.6 Methods of mass determination

The mass ratio and the component masses are, apart perhaps from the orbital period,

the most fundamental physical parameters of any binary star system. A knowledge

of the component masses is central to our understanding the origin, evolution and

behaviour of CVs. Population synthesis models (e.g. de Kool, 1992) and the dis-

rupted magnetic braking model (§ 1.4.7) of CV evolution are just two crucial aspects

that require reliable masses in order to be observationally tested. Unfortunately, at

present reliable CV mass estimates are limited to approximately 20 systems, par-

tially due to the intrinsic difficulties in obtaining such masses (see Smith & Dhillon

(1998) for a review).
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1.6.1 Mass-orbital period relations

Reasonable estimates of the masses of the secondary stars in CVs can be obtained

from the mass-orbital period relationship (Robinson, 1973, 1976; Warner, 1995, page

106). Note that equation 1.1 can be rewritten as

M2

M⊙

= 0.358

(

1 + q

q

)
1

2

(

RL

a

)
3

2

(

M1

M⊙

R⊙

RL

)
3

2

Porb(h). (1.33)

The first two terms in brackets are virtually independent of the mass ratio q. The

last can be determined from any mass-radius relationship. Following Warner (1995,

page 106), I adopt the empirical result for low-mass (< 0.5 M⊙) main-sequence stars

of Caillault & Patterson (1990), as appropriate for the secondary stars in CVs:

R

R⊙

= 0.918

(

M

M⊙

)0.796

. (1.34)

Combining these last two equations with equation 1.8 gives an approximate mass-

period relationship for the secondary stars in CVs:

M2

M⊙

≈ 0.091P 1.44
orb (h). (1.35)

Smith & Dhillon (1998) obtained an empirical mass-period relation for the secondary

star from CVs with well-determined component masses:

M2

M⊙

= (0.126 ± 0.011)Porb(h) − (0.11 ± 0.04). (1.36)

Although such a method of mass determination is obviously not entirely satisfactory,

mass-period relations such as equations 1.35 and 1.36 provide a means of estimating

the secondary mass in a CV from what is often the only available observational

constraint: the orbital period. Unfortunately, they provide no clue as to the mass
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of the primary star.

1.6.2 Radial velocity mass determination

The masses of the primary and secondary star can be directly determined if the

radial velocities of the stellar components K1 and K2 and the orbital period and

inclination are accurately known.

Observed at an inclination i, the radial velocity amplitude of the primary is

K1 =
2πa1

Porb

sin i (1.37)

and that of the secondary is

K2 =
2πa2

Porb

sin i. (1.38)

From

a = a1

(

M1 + M2

M2

)

(1.39)

and Kepler’s third law (equation 1.1), we then obtain the standard relationships for

the mass functions f of the primary

f(M1) =
PorbK

3
2

2πG
(1.40a)

=
(M2 sin i)3

(M1 + M2)2
(1.40b)

= M1

(

q

1 + q

)2

sin3 i (1.40c)
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and of the secondary

f(M2) =
PorbK

3
1

2πG
(1.41a)

=
(M2 sin i)3

(M1 + M2)2
(1.41b)

= M2

(

1

1 + q

)2

sin3 i. (1.41c)

Note that the mass functions are functions of the observable quantities K and Porb

only. As the mass ratio q is given by

q = K1/K2 = M2/M1, (1.42)

the orbital inclination is all that is needed to gain accurate individual masses if

the mass functions are known. However, the inclination is generally only reliably

determined in eclipsing systems. The fact that a system exhibits eclipses at all

constrains the inclination to 60◦ . i < 90◦ (figure 1.14). An eclipse of the white

dwarf further limits the inclination to 75◦ . i < 90◦. The presence of distinct

eclipses of the white dwarf and bright spot allows, as discussed in the following

section, accurate determination of both the mass ratio and orbital inclination.

The orbital inclination can also be estimated in non-eclipsing systems from modelling

of ellipsoidal variations (Russell, 1945) from the secondary star (e.g. Sherrington

et al., 1982; Berriman et al., 1983; McClintock et al., 1983), but this requires accurate

modelling of reflection effects and gravity- and limb-darkening (e.g. Lucy, 1967;

Pantazis & Niarchos, 1998; Claret & Hauschildt, 2003). Smith & Dhillon (1998)

describe various other methods by which estimates of stellar masses in CVs may be

made, but in general eclipsing systems are the only ones for which we know reliable

inclinations (Warner, 1995, page 103).

Measuring the radial velocity amplitude of the white dwarf is problematic. The white
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Figure 1.14: The relationship between the mass ratio q and orbital inclination i for
grazing eclipses (∆φ = 0) of (bottom) the bright spot and (top) the white dwarf.
The disc radius is 0.35a.

dwarf (absorption) lines usually only dominate in the ultra-violet, and are hence

generally unobservable from below-atmosphere sites. Sion et al. (1998) obtained a

direct measurement of the white dwarf radial velocity amplitude of U Gem from

Hubble Space Telescope (HST) observations using the Si iii absorption line. In

general, however, K1 has to be measured from optical emission lines of the accretion

disc. For an azimuthally symmetric disc, these lines trace the orbital motion of the

primary. Problems arise when the disc departs significantly from this symmetry, due

primarily to interactions between the disc and gas stream in the region of the bright

spot. This gives rise to phase shifts and apparent orbital eccentricities in the radial

velocity curves. Techniques that determine the radial velocity amplitude from the

emission line wings (e.g. the double-Gaussian method of Schneider & Young, 1980)

presume that most of the asymmetric emission originates in the outer disc (Horne

et al., 1986) where the disc-stream interaction should be maximised. Frequently,

however, this does not solve the problem (e.g. Thoroughgood et al., 2004), and the
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emission lines are asymmetric at all radii. The radial velocity distortions can be

either due to asymmetric brightness distributions (e.g. Stover, 1981), perhaps due

to the gas stream overflowing the edge of the disc and impacting the disc at smaller

radii (Lubow & Shu, 1975), and/or to non-Keplerian velocity distributions (e.g.

Schoembs & Hartmann, 1983; Marsh et al., 1987). Equation 1.41a shows that the

mass function is highly dependent on an accurate determination of K1; for the most

part making the use of uncertain values of K1 in mass determinations unwise.

For the above reasons, radial velocity studies generally concentrate on K2. Although

absorption lines from the secondary can be observed at the red end of the spectrum,

the continuum emission is often dominated by the disc. Cross-correlation of the CV

spectrum with a template of a cool dwarf spectrum (Stover et al., 1980) is often

used to obtain the radial velocity amplitude of the secondary. Summing phase-

binned spectra followed by such cross-correlation can reveal many weak absorption

lines from the secondary (Horne et al., 1986). A technique known as skew-mapping,

which also makes use of cross-correlation of CV and template star spectra, is useful

in cases where the signal-to-noise ratio is poor. Vande Putte et al. (2003) describe

the method in detail; it entails finding the peak of the line integral of the cross-

correlation function in the (K1, K2) plane.

Rotational broadening of the secondary’s absorption lines can also be used to deter-

mine the value of v sin i for the secondary, where v is the rotational velocity of the

secondary. As the secondary star is tidally locked, its rotation period is identical to

the orbital period, yielding (Friend et al., 1990; Horne, Welsh, & Wade, 1993)

R2

a
(1 + q) =

v sin i

K2

. (1.43)

Using equation 1.4 for the volume radius of the Roche-lobe together with the above

expression allows the mass ratio to be determined (e.g Horne et al., 1993; Thor-
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oughgood et al., 2001). The inclination can then be determined from the unique

relation between the mass ratio and orbital inclination for a given eclipse width of

the primary ∆φ (Bailey, 1979; see figure 1.14), which can be understood as follows:

1. At smaller orbital inclinations a larger secondary radius R2 is required in order

to produce a given eclipse width.

2. The secondary radius is defined by the mass ratio because the secondary fills

its Roche lobe.

3. Therefore for a specific white dwarf eclipse width ∆φ the inclination is known

as a function of the mass ratio.

Remember that the shape of the system does not depend on the orbital separation

a: this just determines the scale.

The relation between the eclipse width, orbital inclination and secondary radius is

often approximated by the eclipse of a point source by a spherical body, which gives

the analytical expression (Dhillon et al., 1991)

(

R2

a

)2

= sin2(π∆φ) + cos2(π∆φ) cos2 i. (1.44)

For an axi-symmetric disc the white dwarf eclipse phase width ∆φ is approximately

equal to the full phase width at half maximum of the disc eclipse ∆φ1/2 (e.g. Dhillon,

1990). If the disc eclipse is symmetrical about phase zero then this is a good approx-

imation. The radius of the secondary can then be determined from the mass ratio.

Kepler’s third law (equation 1.1) then allows the rest of the system parameters,

including the stellar masses, to be determined.

Such mass estimates from the radial velocity of the secondary, however, can run

into problems if the secondary flux is not uniform across the surface of the star.
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Effects such as gravity- and limb-darkening need to be accounted for, but the major

problem is irradiation from the primary. This results in absorption features being

eliminated from (or reduced in strength on) the illuminated face of the secondary,

a problem made more complex by the fact that regions of the secondary star will

be shadowed by the accretion disc, so will still show absorption lines. This scenario

results in an asymmetric line flux distribution across the secondary star, which can

adversely affect the measurement of K2. For example, if the absorption lines are

reduced in strength on the side of the secondary facing the primary, then the flux

from the absorption lines will be centred towards the far side of the secondary. The

measured value of K2 will therefore be larger than the true, dynamical, value. As

an example of how this can be corrected for, Thoroughgood et al. (2004) used model

CV spectra with varying numbers of vertical slices across the inner hemisphere of

the secondary star’s Roche-lobe omitted in order to model the irradiation of the

inner face of the star, leading to a corrected value of K2.

1.6.3 The photometric method of mass determination

In a number of eclipsing objects, the component masses may be determined from

photometry combined with a mass-radius relation for the primary (e.g. Wood et al.,

1986). This results in a purely photometric model of the system, untroubled by

concerns about the contamination of K1 or K2. This technique is thus both a valu-

able method of determining the masses in itself, and a useful check of spectroscopic

results. Table 1.1 compares the results achieved by reliable spectroscopic techniques

to those found via photometry alone. The agreement between the values quoted is

good, however, many spectroscopic determinations of the mass ratio for other dwarf

novæ have been excluded due to unreliable techniques being employed. The conclu-

sion to be drawn is that both methods can produce reliable and accurate values, but

that great care must be taken when using spectroscopic data (see Smith & Dhillon,
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Table 1.1: A comparison of purely spectroscopic and purely photometric determina-
tions of the mass ratios of selected dwarf novæ. Only those dwarf novæ with mass
ratios accurately determined by both spectroscopy alone and photometry alone are
shown, as the use of inappropriate data and/or techniques can result in wildly in-
accurate results. See Smith & Dhillon (1998) for a critical discussion of the (then)
available mass estimates of CVs. The photometric determinations listed below all
use the method described in § 1.6.3. The spectroscopic determinations used the
following techniques. V2051 Oph: Ref. 1 used K1 from Hβ and Hγ, corrected for
disc asymmetry, the radial velocities of the disc emission lines and the eclipse width
from the continuum light curve. IP Peg: Ref. 3 used K2 from TiO absorption
features combined with the projected rotational velocity of the secondary star as
determined by Catalán (private communication); ref. 4 used Roche tomography.
EX Dra: Ref. 6 used K1 measured from Hβ, Hγ and Hδ using the double-Gaussian
method of Schneider & Young (1980) and K2 measured from calcium absorption
lines.

Object Spectroscopic Photometric
q Ref. q Ref.

V2051 Oph 0.26 ± 0.04 1 0.19 ± 0.03 2

IP Peg 0.322+0.075
−0.037, 0.43 3, 4 0.35 < q < 0.49 5

EX Dra 0.75 ± 0.01 6 0.72 ± 0.06 7

References: 1. Watts et al. (1986), 2. Baptista et al. (1998),
3. Beekman et al. (2000), 4. Watson et al. (2003),
5. Wood & Crawford (1986), 6. Fiedler et al. (1997),
7. Baptista et al. (2000).

1998 for a detailed discussion of the techniques of mass determination).

The most fundamental requirement of the photometric technique is the presence of

clear and distinct eclipses of the white dwarf and bright spot. An example of such a

system is OY Car, illustrated in figure 1.15. The method then proceeds by utilising

the unique relationship between q and i for a given ∆φ (see the previous section and

figure 1.14).

If it is assumed that the ballistic gas stream, the trajectory of which can be deter-

mined as described in § 1.5.1, passes through the position of the bright spot, by

calculating and comparing the ingress and egress phases of each point along the gas

stream for different values of q to those of the bright spot eclipse timings the mass
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Figure 1.15: An eclipse of OY Car, illustrating the distinct eclipses of the white
dwarf and bright spot. From left, marked by pairs of vertical dashed lines (i.e. the
start and end): the ingress of the white dwarf; the ingress of the bright spot; the
egress of the white dwarf and the egress of the bright spot. The upper curve is the
raw data and the lower curve the data after smoothing. Adapted from Wood et al.
(1989a).

ratio and orbital inclination can be uniquely determined. The additional assumption

that the bright spot lies on the outer edge of the accretion disc gives the radius of

the disc. To obtain the component masses, a mass-radius relation for the primary is

required, for instance the Nauenberg approximation (equation 1.15). This method

of determining the system parameters is discussed in more detail in § 3.2.

1.7 This thesis

Chapter 2 describes the observations and the reduction procedure employed on the

data obtained. I give a detailed review of the ultracam instrument, give full de-

tails of the observations discussed in the latter portions of this thesis and elucidate

the procedures used to reduce the data. In chapter 3, I describe the analysis tech-

niques I applied to this data and a detailed comparison of two distinct methods of

photometric parameter determination. I also describe the eclipse mapping method.

The structuring of the three results chapters mirrors that of the three papers that

this thesis is based upon, and is roughly chronological. The results for the system
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parameters for OU Vir are given in chapter 4 and those for XZ Eri and DV UMa

in chapter 5. Observations of GY Cnc and IR Com are described and discussed in

chapter 6. The main subject of this latter chapter is, however, a discussion of the

results of eclipse mapping of the quiescent disc of HT Cas in two distinct states in

2002 and 2003. The results of eclipse mapping experiments for the other objects are

given at the end of the relevant chapter. I conclude in chapter 7 with a discussion

of the main results of this thesis, and suggest some appropriate future work.
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Chapter 2

Observations and data reduction

All the data presented in this thesis come from observations made with ultracam

on the 4.2-m William Herschel Telescope (WHT) at the Isaac Newton Group of

Telescopes, La Palma. The ultracam instrument is described in detail below; see

also Dhillon & Marsh (2001), Beard et al. (2002), Dhillon et al. (2005), Stevenson

(2005).

2.1 Ultracam

Ultracam is an ultra-fast, triple-beam CCD camera. A ray-trace of ultracam is

shown in figure 2.1. A CAD image of the opto-mechanical design of ultracam is

shown in figure 2.2 and a photograph of the instrument itself is shown in figure 2.3.

Light from the telescope first passes through a collimator (which is interchangeable,

allowing ultracam to be mounted on a variety of telescopes). It then encounters

the first of two dichroic beam-splitters, which reflects light short-wards of ∼ 390 nm

through 90◦, allowing longer wavelengths through. The longer-wavelength light then

strikes the second dichroic. The cut-point for this beam-splitter is ∼ 550 nm, and

53
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detector
window
filter

pupil image

dichroic 1

dichroic 2

u’ camera

g’ camera

r’ i’ z’ camera

collimatortelescope focal plane

Figure 2.1: A ray-trace through ultracam, showing the major optical components:
the collimator, dichroics, cameras, filters and detector windows. From Dhillon et al.
(2005).

light of a wavelength shorter than this is reflected through 90◦ (in the opposite

direction to the blue light), while the rest is transmitted. The light is now split into

three wavelength-dependent components. Each passes through re-imaging optics

and the relevant filter (discussed below) before falling onto one of the three CCD

detectors.

Ultracam uses the u ′g ′r ′i ′z ′ filter system defined by the Sloan Digital Sky Sur-

vey (SDSS; see Fukugita et al., 1996; Smith et al., 2002). The filter transmission

functions are shown in figure 2.4. The importance of this choice of filter system is

three-fold:

1. The u ′g ′r ′i ′z ′ filter system is likely to become the dominant filter system in

the future, as the SDSS will survey the sky in unprecedented depth and detail.

2. Overlaps between the filters are minimised compared to the UBVRI system.

This is of vital importance considering the dichroic beam-splitters used in

ultracam.
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hull

carbon−fibre strutcollimator

u’ ccd head

g’ CCD head

SDSU controllerr’i’z’ CCD head

Figure 2.2: A CAD image of the opto-mechanical design of ultracam, highlighting
some of the components discussed in the text and shown in the ray-trace of figure 2.1.
From Dhillon et al. (2005).

Figure 2.3: A photograph of ultracam in the test focal station of the WHT just
prior to commissioning on the telescope (courtesy of Sue Worswick).
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3. The SDSS r ′ filter has a curtailed red wing compared to the Cousins R filter.

This eliminates fringing with thinned chips in the r ′ filter.

The SDSS filter system is also useful in that it is a very broad band system—the

bandpasses are significantly wider than other filter systems (Fukugita et al., 1996).

This ensures high efficiency, which is useful when observing faint targets.

The ability of ultracam to observe simultaneously in three colours is a crucial

aspect of its design. Three colours enables a stellar spectrum to be distinguished

from a blackbody. Simultaneous observations also eliminate the problem of the

source varying between filter changes, crucial for observations of rapidly varying

targets such as close binary stars.

The CCDs used in ultracam are key to its high time-resolution. The chips used

are three Peltier-cooled (see § 2.3.3 for a discussion of why this is necessary), back-

illuminated, anti-reflection coated (see figure 2.4), thinned EEV 47-20 frame-transfer

CCDs with an imaging area of 1024 × 1024 pixels (13.3 × 13.3 mm), giving a plate

scale of 0.3′′/pixel on the WHT. This gives a field-of-view of 5′ on the WHT. At

a Galactic latitude of 30◦ (the all-sky average), this means that the probability of

finding a comparison star brighter than 13 magnitudes is 0.96 (calculated using the

on-line ultracam comparison star probability calculator, written by Vik Dhillon).

Frame-transfer CCDs have a masked-off storage area. Charge from the exposed

portion of the chip is shifted (or vertically clocked) into this region before being

horizontally clocked and digitized. This has the advantage that horizontal clocking

and digitization can occur whilst the next exposure is taking place. This can vastly

reduce the dead-time between exposures, since the digitization time is typically

much greater than the clocking times (the digitization time is ∼ 6 sec for the full-

frame for ultracam). The vertical clocking speed for the chips used in ultracam

is 24 µs / row, which comes to ∼ 24 ms for the total 1024 rows of pixels of the
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Figure 2.4: Top: Transmission profiles of the ultracam SDSS filter-set (solid lines),
the anti-reflection coating used on the ultracam lenses (dotted line), and the two
dichroics (dashed line and dashed-dotted line). Bottom: Transmission profiles of the
ultracam SDSS filter-set (solid lines) and the atmosphere for unit airmass (dotted
line). Also shown are the quantum efficiency curves of the u′ and g′ CCDs (dashed
line) and the r ′i ′z ′ CCD (dashed-dotted line). From Dhillon et al. (2005).
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ultracam CCDs. As long as the exposure time is longer than the sum of the

horizontal clocking and digitization times, the dead-time is reduced to the vertical

clocking time.

Another useful, indeed crucial, aspect of the design of ultracam is the ability

to only read out selected parts of the CCDs, called windows. This reduces the

digitization time, and therefore the readout time, enabling higher frame rates to be

achieved.

Ultracam also has a mode known as drift mode. In this mode a pair of windows

are vertically clocked until they are just within the masked-off region of the chip,

whereupon another pair of windows are exposed. In this way a vertical stack of

windows is produced, and the dead time between exposures is much reduced. The

stack of windows are continually shifted down the exposed and masked areas of the

chip before being read out at the bottom. New windows are continually added at

the top of the exposed area of the chip. Drift mode allows frame rates of up to

500 Hz to be realised. Stevenson (2005) discusses this in detail.

2.2 Journal of observations

Table 2.1 presents a full journal of observations. All the objects are dwarf novæ

observed in quiescence, although OU Vir shows some evidence (see chapter 4) for

being on the descent from superoutburst in both 2002 May and 2003 May. In the case

of the 2003 May observations, this is supported by the detection of a superoutburst

on May 2 by Kato (2003).

The observers in 2002 May (the commissioning run) were Vik Dhillon, Tom Marsh,

Mark Stevenson, Paul Kerry, Carolyn Brinkworth, David Atkinson and Andy Vick.
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In 2003 May, the observers were Vik Dhillon, Tom Marsh, myself, Carolyn Brinkworth

and Paul Kerry. In 2003 November, the observers were Tom Marsh and myself.

2.3 Data reduction

In this section I describe the data reduction procedure. Excepting GY Cnc, all

the data were reduced by myself using the optimal extraction algorithm (Naylor,

1998) incorporated in Tom Marsh’s ultracam pipeline data reduction software,

which resulted in a significant improvement in the signal-to-noise ratio over ‘normal’

extraction at low count rates (the u ′ data in particular; see § 2.3.4). The data

for GY Cnc were reduced using the pipeline data reduction software with normal

aperture photometry, due to a problem with the optimal extraction at high count

rates1.

Subsequent analysis was conducted by myself. Transparency variations were re-

moved by dividing the target counts by that of a comparison star. Times were

converted from modified Julian dates on the UTC time-scale (MJD) to heliocentric

Julian dates (HJD) using the fruit Fortran subroutine, written by Peter Young.

The comparison star counts were converted to SDSS magnitudes using observations

of standard stars (Smith et al., 2002). All the data were corrected to zero airmass

using the procedure discussed in detail in § 2.3.5.

2.3.1 Bias frames

The presence of readout noise, which occurs when digitizing charge in each pixel of

the CCD, necessitates the addition of a (near) constant number of counts to each

1Note first that this problem does not affect the rest of the data presented in this thesis,
and second that this problem is (believed to be) unrelated to the fact that so-called ‘optimal’
photometry is only optimised for low count rates where the noise is sky-limited (see § 2.3.4).
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Table 2.1: Journal of observations. All dates are the start of the nights’ observing. The r ′ extinction is taken from the ING website,
www.ing.iac.es, and is measured nightly by the Carlsberg Meridian Telescope. Values marked by a colon (:) are uncertain, probably
due to the night being non-photometric.

Target Date Filters UT start UT end Exposure Seeing Data Cycle Eclipses r′ extinction
(yyyy mm dd) (hh:mm) (hh:mm) time (sec) (arcsec) points (mag/airmass)

OU Vir 2002 05 16 u ′g ′r ′ 23:38 02:18 0.5 1.2 1685 9442–9443 2 0.124
2002 05 18 u ′g ′r ′ 00:20 00:25 1.7 2.1 59 1538 0 0.107
2002 05 18 u ′g ′r ′ 00:26 02:10 4.0 2.1 1538 9470 1 0.107
2003 05 19 u ′g ′z ′ 01:30 02:35 9.2 4.5 430 14504 0 0.188:
2003 05 20 u ′g ′i ′ 01:14 02:36 5.2 1.2 933 14518 1 0.092:
2003 05 22 u ′g ′i ′ 22:58 23:25 4.2 0.8 373 14544 1 0.234
2003 05 25 u ′g ′i ′ 00:05 00:41 4.2 1.5 548 14586 1 0.115

DV UMa 2003 05 20 u ′g ′i ′ 23:06 23:40 5.9 1.3–2.0 339 69023 1 0.092:
2003 05 22 u ′g ′i ′ 22:26 22:54 4.9 1.2 345 69046 1 0.234
2003 05 23 u ′g ′i ′ 23:03 23:08 3.9 1.0 60 69058 0 0.383
2003 05 23 u ′g ′i ′ 23:08 23:44 3.9 1.0 540 69058 1 0.383

XZ Eri 2003 11 13 u ′g ′i ′ 23:25 01:48 7.0 1.0–2.0 1225 4733–4734 2 0.073

GY Cnc 2003 05 19 u ′g ′z ′ 21:00 22:20 2.1 & 3 2256 6826 1 0.188:
2003 05 23 u ′g ′i ′ 22:02 23:01 1.6 1 2150 6849 1 0.383
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Table 2.1: Continued. Journal of observations. The i ′ sensitivity was lost during the 2002 September 14 eclipse of HT Cas due to
a technical problem with this band. The GPS signal, used for time-stamping each exposure, was lost for the HT Cas data of 2003
October 29. This means that the absolute time of each exposure was incorrectly recorded, although the relative timing within the
run remains accurate. The cycle number for the data of 2003 October 29 is therefore estimated from times in the observing log.
Due to poor weather, the extinction could not be measured for this night, and is therefore assumed to be 0.1 mag/airmass in the
r ′ band, the mean of the previous and subsequent nights’.

Target Date Filters UT start UT end Exposure Seeing Data Cycle Eclipses r′ extinction
(yyyy mm dd) (hh:mm) (hh:mm) time (sec) (arcsec) points (mag/airmass)

IR Com 2003 05 21 u ′g ′i ′ 23:49 00:26 3.2 1 676 37857 1 0.197
2003 05 23 u ′g ′i ′ 23:50 00:29 3.2 1 720 37880 1 0.383
2003 05 25 u ′g ′i ′ 21:39 22:28 3.2 1.5 901 37902 1 0.115

HT Cas 2002 09 13 u ′g ′i ′ 23:13 01:00 1.1 1.2 5651 119537 1 0.089
2002 09 14 u ′g ′i ′ 22:43 00:23 0.97–1.1 1.3–2.3 5470 119550 1 0.071
2003 10 29 u ′g ′i ′ – – 1.3 1.4 4659 125116 1 0.1:
2003 10 30 u ′g ′i ′ 19:25 22:01 1.3 1.0–1.5 6930 125129–125130 2 0.084
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pixel: the bias. If this bias were not added, a systematic error would result when

reading out low counts, since negative counts are not recorded by the analogue-to-

digital converter. A bias frame can be obtained by taking a zero second exposure.

In practice, with ultracam, an exposure time of 1 ms (the minimum exposure time

permitted by the camera control software), in dark conditions, was used to take bias

frames.

The high time-resolution of ultracam means that many bias frames were taken.

These were combined using a clipped mean (at the 3σ level) to create a high signal-

to-noise master bias frame free of cosmic rays. The master bias was subtracted from

each data frame automatically by the pipeline software.

2.3.2 Flat fielding

The sensitivity of the CCD may vary across its surface. This variation occurs on

both small scales (pixel-to-pixel variations in area) and large scales (e.g. vignetting,

dust on the chip). These problems can be corrected by using a flat field.

A flat is created by taking an exposure of a uniform field of light. The best such

field is usually an empty area of the twilight sky. Due to the inevitable presence of

some (faint) field stars, the telescope was stepped in a spiral pattern during the flat

field exposures. The resulting flats were then combined into a master flat field for

use by the pipeline software by the following procedure.

First, the master bias was subtracted from each individual flat frame. The individual

frames were then combined into a master flat using the ‘makeflat’ procedure in the

pipeline software. This ignores all frames with counts above or below a certain

level (30 000 and 7 000, respectively). High counts may mean that the exposure

is saturated, distorting the shape of the flat. Also, above counts of ∼ 30 000 a
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‘peppering’ effect occurs on the ultracam CCDs. This effect is when adjacent

pixels have high and low count levels, resulting in a chequered appearance across

the chip. The cause of this effect is currently unknown (Stevenson, 2005). At the

other extreme, low counts will introduce excessive noise into the master flat. The

makeflat procedure first determines the mean levels of all input frames and then

averages them, again using a clipped mean at the 3σ level, in groups of similar

mean level. The averages are then co-added. The makeflat procedure correctly

weights low and high signal flats. Each CCD is then normalised by its mean to

produce the master flat.

The data frames are then corrected for the sensitivity variations and vignetting by

dividing through by the resulting master flat after bias subtraction.

2.3.3 Dark frames

Even in the complete absence of photons, the CCD would register a signal greater

than that of the bias. This is due to thermal excitation of electrons in the semi-

conductor, known as dark current. This can be corrected for by exposing the CCD

in the absence of light for a significant length of time. The resulting frames can be

combined (correcting for the exposure time) and subtracted from the data and the

flats.

Dark current with ultracam is less than 0.1 electrons/pixel/sec, a factor of ap-

proximately 50 less than the photon rate from the u ′-band sky on the WHT. This

is achieved due to the cooling of the CCDs to −40◦C. Dark frames are difficult to

obtain in practice, since eliminating all sources of light in the WHT dome proved

problematical, so they were not used in the reduction of these data. Given the very

low level of the dark current with ultracam, the use of dark frames would have

made a negligible difference to the final data.
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2.3.4 Extraction

The end-product of an ultracam observation is a spatially resolved image of the

star field, containing many stellar profiles, some of which, especially in crowded

fields, may overlap. There are two principal techniques used to measure the bright-

ness of a star in such a field: aperture photometry, or ‘normal’ extraction, and profile

fitting, or ‘optimal’ extraction.

Normal extraction

Aperture photometry quite simply adds up all the counts within a defined software

aperture to obtain the counts from the star. Three circles, of differing radii, are

usually defined. The inner aperture contains the star. The outer two are used to

define an annulus in which to measure the sky counts. The average sky brightness

is estimated (using a clipped mean) from the counts within the sky annulus, and

this value is subtracted from each of the pixels lying within the star aperture. The

standard deviation σ of the sky brightness η can either be estimated from the photon

noise (σ2 = η for Poissonian statistics) or from the variance (σ2 = (η−η̄)2

N−1
, where N is

the number of pixels). That is, the error in the former case comes from Poissonian

statistics and in the latter from the measured variation in the sky photons within

the sky annulus. For the data in this thesis, the sky error was estimated using the

variance.

The choice of aperture size is crucial to obtain the best signal-to-noise. If the

aperture size is too small, then too few counts from the star will be included. For

differential photometry this is not a problem with regard to estimating the flux from

the target because the same fraction of counts will be lost from the comparison star

as from the target star. The signal-to-noise will not be maximised, however, as the

total counts will be lower. This of course assumes that the point-spread function
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(PSF) is constant across the field and that the apertures are both accurately centred

on the stars. Other noise sources such as read-out noise from the detector will

be minimised. Use of too small an aperture can, however, give rise to so-called

aperture noise. This arises because the flux depends on which pixels are summed,

and therefore on the size and position of the seeing disc (Shahbaz et al., 1994). If

an aperture is chosen that is too large, then excess noise from the sky and read-out

noise will be included. In practice, several different sizes of aperture are reduced and

the one with the best signal-to-noise ratio used. Variable seeing means that the size

of this aperture may change during the course of one set of observations (although

this can be allowed for by fitting a PSF to a bright comparison star and scaling

the target aperture by a set amount of the resulting full-width at half maximum

(FWHM); see below).

Optimal extraction

Two major problems exist with simple aperture photometry. The first, and most

obvious, is encountered with crowded fields. This can lead to the flux from a neigh-

bouring star contaminating the target aperture. Disentangling the flux from the

two (or more) stars requires profile fitting. This models the sky-subtracted flux as

a series of point sources convolved with the PSF. The PSF is either fitted by an

analytical function (e.g. Penny & Dickens, 1986) or by fitting the observed profile

with an empirical profile (e.g. Stetson, 1987). The second problem was alluded to

above: it is one of optimisation.

The ‘optimal’ extraction algorithm for imaging photometry was developed by Naylor

(1998). It aims to extract the best possible signal-to-noise from the data. For faint

sources, the noise is sky-limited, that is, the noise from the sky is much greater than

photon noise from the source. (It is in fact sky and/or readout noise limited, but

readout noise is also dependent on the number of pixels in the aperture, so I shall
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for simplicity’s sake lump the (constant) readout noise and the (variable) sky noise

together and refer only to sky noise when meaning both.) In this case, the best

aperture is small, so that as little sky is included as possible. But how small can

this aperture be before too few counts from the source are included?

The solution is to sum the counts from the star using a weight function for each pixel

determined from the PSF measured using a bright comparison star. The procedure

recommended by Naylor (1998) is as follows:

1. Use a bright, non-saturated single comparison star in the image to fit the PSF.

The integral of this PSF is normalised to one. The PSF is then integrated over

individual pixels in order to resample it to the pixel grid (i, j) of the detector,

forming the estimated PSF, PE.

2. The stars of interest (the target and any comparison stars) are then fitted

using PE, with the parameters fixed, in order to accurately determine their

positions.

3. The normalisation from the PSF fit to the faintest star defines F ′, the flux

from the faintest star, used to define the variances σ2
i,j of each pixel:

σ2
i,j = σ2

s +
F ′PE

i,j√
g

, (2.1)

where σs is the variance for a single pixel containing only sky and g is the gain.

4. The result from equation 2.1 is then used to define a weight function Wi,j for

each star:

Wi,j =
PE

i,j

σ2
i,j

∑

k,l[(P
E
k,l)

2/σ2
k,l]

. (2.2)

This weights the flux contribution from each pixel according to the variance

(σ2
i,j) of that pixel. The weight function defined by equation 2.2 can then be
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used to estimate the flux from each star

F =
∑

i,j

Wi,j(Di,j − Si,j), (2.3)

where Di,j and Si,j are the total counts and estimated sky counts for each

pixel. The standard deviation of the measured flux is then

σ =

√

∑

i,j

W 2
i,jσ

2
i,j. (2.4)

Since the weight mask, mathematically, extends out to infinity, a choice must be

made about where to terminate it. This should obviously be before any neighbouring

stars make any significant contribution to the flux or the edge of the detector area

is reached. A sensible termination point is 2×FWHM, by which time the weights

are so small that very little difference is made to the signal-to-noise ratio (remember

that the seeing profile is almost always a good approximation to a Gaussian).

The PSF is fitted using a function which describes the seeing disc. A Gaussian

function is frequently used, but in practice a Moffat profile (Moffat, 1969) often

produces a better fit, and in any case approximates a Gaussian well in poor seeing.

The intensity I(r) at a distance r from the location of the peak intensity of the

profile I0 for a Moffat profile is given by

I(r)

I0

=
1

[1 + (r/R)2]β
, (2.5)

where R is known as the width parameter and β is a dimensionless parameter which

dictates the shape of the profile, and is typically 3–5. Both of these parameters

depend on the seeing.

Optimal photometry can also be used to disentangle the fluxes of two stars whose

profiles overlap by using the measured PSF. Naylor (1998) describes the procedure,
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but it will not be discussed here, as it was not necessary for the work contained in

this thesis.

Optimal photometry is designed for cases where the variances are sky or readout-

noise limited, so for high signal-to-noise data it is not necessarily the best method.

For the data presented in this thesis, optimal photometry was found in all cases (ex-

cept for GY Cnc; see § 2.3) to significantly improve the u ′ signal-to-noise, frequently

improving the r ′, i ′ or z ′ band also, and made negligible difference in the g ′. It was

therefore used to reduce all the data (except for GY Cnc). As previously mentioned,

optimal extraction only gives the correct ratio of target counts to comparison counts.

To correct this ratio to actual fluxes and magnitudes, the comparison flux must be

measured using normal extraction during photometric conditions.

For the work contained in this thesis, the principal advantages of optimal photometry

are as follows.

1. Ease of use. Optimal photometry automatically extracts the best (or near-

best) signal-to-noise ratio for each frame. It is not necessary to manually

compare the results from different aperture sizes as with normal extraction.

2. The most obvious advantage over normal aperture photometry is the increase

in signal-to-noise for low count rates. This is at least 10 per cent, and can be

much greater (Naylor, 1998).

2.3.5 Flux calibration

There are three main steps in the reduction of raw (sky- and bias-subtracted and

properly flat-fielded) counts to correctly calibrated fluxes: correction of extinction

due to scattering and absorption in the Earth’s atmosphere, an instrumental cor-
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rection due to the deviation of the detecting apparatus from the standard and con-

version of the calibrated magnitudes into flux.

Atmospheric extinction

Absorption and scattering processes in the Earth’s atmosphere significantly reduce

the flux from a star. There are three main sources of this extinction: Rayleigh scat-

tering by molecules in the atmosphere, molecular absorption (by, for example, ozone,

water vapour and carbon dioxide) and aerosol scattering (by dust for instance). The

exact extinction correction depends on the current atmospheric conditions, the air-

mass, X, of the target and the wavelength or filter. The airmass is the length of the

column of air passed through by the light relative to that at the zenith. It increases

as the angular distance from the zenith (where X = 1) increases. This relationship

can be well approximated by assuming the atmosphere to be plane-parallel, yielding

X = sec Z, (2.6)

where Z = 90◦ − altitude is the zenith distance. This approximation breaks down

for Z & 60◦, where a more complex formula must be used (e.g. Kristensen, 1998).

The flux received at the telescope is usually corrected to above the Earth’s atmo-

sphere, i.e. at airmass zero. The instrumental magnitude mλ can be corrected to

the instrumental magnitude at airmass zero mλ0 by the following equation (e.g.

Fukugita et al., 1996):

mλ0 = mλ − (κ′

λ + κ′′

λC)X (2.7a)

= −2.5 log10

(c

t

)

− (κ′

λ + κ′′

λC)X, (2.7b)

where κ′

λ is the primary extinction coefficient, κ′′

λ is the secondary extinction coef-
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ficient, C is the colour index (e.g. u′−g ′) of the target, c is the number of received

counts and t is the exposure time.

The data in this thesis have been corrected for first-order extinction effects only.

That is, the κ′′

λC term has been neglected in equations 2.7a and 2.7b, as κ′′

λ is signif-

icantly smaller than κ′

λ and C is usually . 1. For example, Smith et al. (2002) quote

κ′′

g′ = −0.016 ± 0.003, whereas κ′

g′ is typically an order of magnitude greater than

the modulus of this. This simplifies matters: the airmass correction now depends

only on the primary extinction coefficient (usually measured in mag/airmass) and

the airmass. All data were corrected to airmass zero (i.e. above the atmosphere)

using the nightly extinction coefficients measured by the Carlsberg Meridian Tele-

scope on La Palma in the r ′ filter, and converted to other colour bands using the

procedure described by King (1985) and the effective wavelengths of the filters given

by Fukugita et al. (1996).

The κ′′

λ term in equations 2.7a and 2.7b is necessary for extremely accurate photom-

etry because of the wavelength-dependent nature of the scattering processes. This

means that within a filter’s bandpass, some wavelengths will suffer more extinction

than others. In general, shorter wavelengths are scattered and absorbed more than

longer ones. It also corrects for any differences between the spectral energy dis-

tributions of the standard and target stars, as well as any instrumental differences

between the system used to define the magnitude scale and the one used for the

observations (e.g. the filter transmission or the CCD quantum efficiency) that may

lead to colour-dependent offsets. Neglecting this term will therefore give rise to a

(small; of the order of κ′′

λ) systematic error in the fluxes (for a detailed discussion,

see Smith et al., 2002).
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Instrumental correction

No two instrumental set-ups are ever exactly the same, unfortunately. This means

that in order to be able to directly compare flux or magnitude measurements made

with different detector and filter systems, each must be corrected to an agreed

standard. For the SDSS photometric system used by ultracam, this standard

is defined by the standard star network as measured by the 60-cm SDSS Monitor

Telescope at Apache Point Observatory using the u ′g ′r ′i ′z ′ filter system with a

thinned, back-illuminated, UV-anti-reflection-coated CCD (Fukugita et al., 1996;

Smith et al., 2002). To transform an extinction-corrected magnitude to a standard

magnitude, mλ0s, a zero-point ρ for each filter must be determined:

mλ0s = mλ0 + ρ. (2.8)

Combining equations 2.7b and 2.8, the following expression for the zero-point is

obtained:

ρ = mλ0s + 2.5 log10

(c

t

)

+ κ′

λX. (2.9)

The zero-points for each filter are obtained from observations of SDSS standard stars.

These were reduced using the ‘normal’ photometry option in the pipeline software

(optimal photometry only yields a valid flux ratio; the individual flux estimates

are unreliable) during photometric conditions. The zero-point for each filter was

found by taking the weighted mean of all the zero-points for individual exposures.

A summary of the standard stars observed for this purpose and the zero-points thus

determined is given in table 2.2.

As mentioned in § 2.3.4, optimal extraction only yields a valid ratio of counts. In

order to determine the magnitude of the target star mtar
λ0s, the magnitude of the

comparison star mcomp
λ0s was therefore determined using ‘normal’ photometry using
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Table 2.2: Determination of mean zero-points from ultracam SDSS standard stars. Standard star magnitudes are given in Smith
et al. (2002), and the zero-point ρ is as defined in equation 2.9.

Target Date Filters Zero-point ρ
(yyyy mm dd) u ′ g ′ r ′ i ′ z ′

BD +82015 2003 11 12 u ′g ′z ′ 25.00 ± 0.39 26.91 ± 0.34 – – 25.28 ± 0.33
G 93–48 2003 11 3–4 u ′g ′r ′ 24.70 ± 0.41 26.62 ± 0.39 26.18 ± 0.42 – –
Feige 22 2002 9 19 u ′g ′r ′ 24.860 ± 0.061 26.736 ± 0.058 26.242 ± 0.060 – –
PG 1047 +003A 2003 5 21–25 u ′g ′i ′ 25.133 ± 0.055 26.983 ± 0.049 – 26.093 ± 0.047 –
RU 149B 2003 11 3 u ′g ′r ′ 24.96 ± 0.33 26.77 ± 0.29 26.37 ± 0.29 – –
RU 152 2003 11 1 u ′g ′r ′ 24.92 ± 0.29 26.79 ± 0.29 26.37 ± 0.30 – –
SA 113 339 2003 5 21–24 u ′g ′i ′ 25.02 ± 0.17 26.89 ± 0.17 – 25.98 ± 0.17 –
SA 95 190 2002 9 19 u ′g ′r ′ 24.952 ± 0.11 26.789 ± 0.096 26.295 ± 0.096 – –
SA 115 516 2003 10 30 u ′g ′i ′ 25.09 ± 0.70 26.87 ± 0.58 – 26.11 ± 0.52 –
BD 353 659 2002 9 9, 12 u ′g ′i ′ 25.1113 ± 0.0017 26.9164 ± 0.0015 – 26.1226 ± 0.0014 –
Hilt 190 2002 9 9 u ′g ′i ′ 24.88 ± 0.38 26.79 ± 0.34 – 26.03 ± 0.31 –
GJ 745A 2002 9 9 u ′g ′i ′ 26.11 ± 0.22 26.93 ± 0.28 – 26.11 ± 0.22 –

Weighted mean – – 25.1111 ± 0.0017 26.9163 ± 0.0015 26.26 ± 0.05 26.1226 ± 0.0014 25.28 ± 0.33
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the above techniques, in a similar way as for the standard stars, using the zero-points

obtained therefrom. The magnitude of the target star is then simply given by

mtar
λ0s = −2.5 log10

(

ctar

ccomp

)

+ mcomp
λ0s . (2.10)

Absolute calibration

The above corrections place the observations on the AB magnitude system (Oke &

Gunn, 1983). One of the major advantages of this system is that the magnitude is

directly related to the flux per unit frequency fν (Fukugita et al., 1996):

fν(Jy) = 3631 × 10(−0.4mλ0s). (2.11)



74 CHAPTER 2. OBSERVATIONS & DATA REDUCTION



Chapter 3

Analysis techniques

3.1 Phasing the data

Before any of the following analyses can proceed, the data must first be phased,

that is, the x -axis must be converted from units of time to units that express at

what point the star is in its orbit. The orbital phase usually runs from 0 to 1

over an orbital cycle (numbers greater than 1 indicate subsequent cycles). Phase

zero is usually defined, and I follow this convention, as the mid-point of the white

dwarf eclipse. For a symmetrical white dwarf eclipse, implying a symmetrical light

distribution over the white dwarf, this is equivalent to the superior conjunction of

the white dwarf. Some authors define phase zero as the point of minimum light,

which in systems with asymmetric disc emission (e.g. from the bright spot) can lead

to a systematic disagreement of a few seconds with the definition I have adopted.

The times of white dwarf mid-ingress Twi and mid-egress Twe were determined by

locating the times when the minimum and maximum values, respectively, of the light

curve derivative occurred (see § 3.2), using the techniques described by Wood et al.

(1985, 1986, 1989a). A median filter was used to smooth the data, the derivative

75
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of which was then calculated numerically (a median filter preserves the shape of

the original light curve better than a box-car, or running mean, filter). A box-car

filter (which reduces the noise more than a median filter would) was applied to this

derivative, and simple searches were made to locate the minimum and maximum

values of the derivative corresponding to the midpoints of ingress Twi and egress

Twe. (In fact this method locates the steepest part of the ingress and egress, but one

would expect these to correspond to the midpoints unless the light distribution of

the white dwarf is asymmetrical.) If a bright spot eclipse is also present, the ingress

and egress times of the white dwarf must be visually inspected to ensure that they

are not confused with those of the bright spot. The times of mid-eclipse were then

determined by assuming the white dwarf eclipse to be symmetric around phase zero

and taking Tmid = (Twe + Twi)/2. This technique locates the time of mid-eclipse to

an accuracy comparable to the time-resolution of the data.

The orbital ephemeris was then determined from all available mid-eclipse times and

cycle numbers for each target by a linear least-squares fit. The errors adopted for

the times of mid-eclipse taken from the literature, where not explicitly stated, were

estimated from the number of significant figures quoted or the time-resolution of the

data, whichever gave the larger error. The resulting orbital ephemerides are of the

form

HJD = HJD0 + PorbE, (3.1)

where E is the cycle number and HJD and HJD0 are the heliocentric Julian date

of the midpoint of the eclipse of cycles E and 0. All HJD times quoted, throughout

this thesis, are co-ordinated universal time, UTC, corrected to the heliocentre (i.e.

not barycentric dynamical time, TDB).
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3.2 Derivative method

This method of determining the system parameters of an eclipsing dwarf nova was

originally developed by Wood et al. (1986). It relies upon the fact that there is a

unique relationship between the mass ratio q = M2/M1 and orbital inclination i for

a given eclipse phase width ∆φ (Bailey, 1979), as discussed in § 1.6.2 and § 1.6.3.

The first requirement of this technique is accurate timings of the white dwarf and

bright spot eclipse contact phases. Here and hereafter the midpoints of ingress and

egress are denoted by φi and φe, respectively, the eclipse contact phases correspond-

ing to the start and end of the ingress by φ1 and φ2 and the start and end of the

egress by φ3 and φ4. In the discussion that follows I use the suffixes ‘w’ and ‘b’ to

denote the white dwarf and bright spot contact phases, respectively (e.g. φwi means

the midpoint of the white dwarf ingress). The midpoints of the eclipse ingresses and

egresses were determined as described in the previous section, with the sole change

being that the data is now phased. The eclipse contact phases φ1. . .φ4 were deter-

mined by locating the points where the derivative differs significantly from a spline

fit to the more slowly varying component (for instance, a disc eclipse or the orbital

hump). Throughout this thesis, the eclipse phase width quoted is the full-width at

half-maximum, given by

∆φ = φwe − φwi. (3.2)

The trajectory of the gas stream originating from the inner Lagrangian point L1

is calculated by solving the equations of motion (equations 1.16 and 1.17) using

a second-order Runge–Kutta technique and conserving the Jacobi Energy (equa-

tion 1.19) to 1 part in 104. This assumes that the gas stream follows a ballistic

path. As q decreases, the path of the stream moves away from the white dwarf.

For a given mass ratio q each point on the stream has a unique phase of ingress

and egress. The eclipse (or not) of a point in the system by the secondary star was
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Figure 3.1: At each phase, when projected along the line of sight onto a given plane
(here, and usually, the orbital plane) the limb of the secondary star forms an arc.
Each point along such a ‘phase arc’ is eclipsed at the same moment. The figure
shows various phase arcs at different orbital phases for q = 0.9 and ∆φ = 0.081.
The axes are in units of the L1 distance. with the white dwarf at the origin. Figure
from Horne (1985).

determined using blink, a Fortran subroutine written by Keith Horne and Tom

Marsh. Blink tests for occultation by the secondary star of a given location in the

co-rotating binary system at a given phase using the procedure described by Horne

(1985).

For each phase, the limb of the secondary forms an arc when projected along the line

of sight onto a given plane (hereafter referred to as a phase arc): each point on an

individual phase arc is eclipsed at the same time (see figure 3.1). The intersection

of the phase arcs corresponding to the respective eclipse contact phases can be used

to constrain the size of the white dwarf and the structure of the bright spot. The

light centres of the white dwarf and bright spot must lie at the intersection of the

phase arcs corresponding to the relevant phases of mid-ingress and mid-egress, φi

and φe. The phase arcs were calculated using full Roche lobe geometry rather than

an approximate calculation, using the blink subroutine.



ULTRACAM PHOTOMETRY OF ECLIPSING CVS 79

As previously discussed in § 1.6.3, the mass ratio—and hence the inclination—

may be determined by comparing the bright spot light centres corresponding to the

measured eclipse contact phases φwi and φwe with the theoretical stream trajectories

for different mass ratios q. This requires the assumption that the gas stream passes

directly through the light centre of the bright spot. I constrain the light centre of the

bright spot to be the point where the gas stream and outer edge of the disc intersect,

so that the distance from the primary at which the gas stream passes through the

light centre of the bright spot gives the outer disc radius Rd/a. For data covering

multiple eclipses, the uncertainties on these parameters may be determined from the

root mean square (rms) variations of the measured contact phases.

The eclipse constraints on the structure of the bright spot can be used to determine

upper limits on the angular size and the radial and vertical extent of the bright spot.

Defining Ajk and Zjk graphically in figure 3.2 as the positions of the intersections

of the phase arcs φbj and φbk in the (x, y) and (Rθ, z) planes respectively, one can

define

∆θ = (θ23 + θ24 − θ13 − θ14)/2 (3.3a)

∆Rd = (R24 + R14 − R23 − R13)/2 (3.3b)

∆Z = (H23 − H14)/2 (3.3c)

∆Z2 = H23, (3.3d)

where Rjk and θjk are the radius and azimuth of Ajk and Hjk the height of Zjk above

the orbital plane. Equations 3.3a and 3.3b are defined as by Wood et al. (1986).

Note that the definition of ∆Z in equation 3.3c differs slightly to that defined in

Wood et al. (1986): this is in order to be more consistent with the definitions of ∆θ

and ∆Rd in equations 3.3a and 3.3b. ∆Z2, defined in equation 3.3d, is identical to

∆Z as defined by Wood et al. (1986), and is included here for ease of comparison.
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Figure 3.2: The horizontal and vertical structure of the bright spot of Z Cha for
q = 0.1495. The top panel (a) shows the region on the orbital (x, y) plane on which
the bright spot lies. The light centre of the bright spot LC is shown surrounded
by a solid box corresponding to the rms variations in the phases of mid-ingress φbi

and mid-egress φbe. Surrounding this is the solid box corresponding to the eclipse
contact phases φbj . . . φbk (the vertices of which define Ajk) and their rms variations
(dotted boxes). The accretion disc of radius Rd/a = 0.334 is also plotted, as is the
stream trajectory. Panel (b) is similar, differing in that it shows the projection of the
phase arcs onto the vertical cylinder of radius equal to that of the disc, 0.334a, i.e. in
the plane (Rθ, z). θ increases in the direction of orbital motion and is zero at the line
joining the centres of the two stars. Intersections of the phase arcs corresponding
to the contact phases of the bright spot are labelled Zjk. Figure from Wood et al.
(1986).
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The eclipse constraints on the radius of the white dwarf can be used, together with

the mass ratio and orbital inclination to determine the radius of the white dwarf. An

alternative possibility is that the sharp eclipse is caused by a bright inner disc region

or boundary layer surrounding the white dwarf like a belt. Another possibility is that

the lower hemisphere of the white dwarf is obscured by an optically thick accretion

disc, which would result in a larger white dwarf radius than that measured (see, for

example, figure 4.6). The latter can be checked, as if the contact phases φwi and φwe

lie half-way through the white dwarf ingress and egress, the light distribution must

be symmetrical.

The following analysis assumes that the eclipse is solely of a white dwarf. If the

eclipse is actually of a belt and the white dwarf itself is not visible, then the white

dwarf radius must be somewhat smaller than the radius of the belt. If the white

dwarf does contribute significantly to the eclipsed light, then the white dwarf radius

derived is actually an upper limit, so that the white dwarf mass determined from it

is actually a lower limit (equation 1.15). The only way to verify the assumption that

the central light source is the white dwarf alone is to measure the semi-amplitude of

the radial velocity curve of the secondary star, K2, and compare the resulting mass

to that predicted by the photometric model. One could also check if this assumption

is true using a longer baseline of quiescent observations, as one might expect eclipse

timings of an accretion belt to be much more variable than those of a white dwarf. I

note, however, that the white dwarf masses of OU Vir and XZ Eri, given in chapters 4

and 5 respectively, are consistent with the mean white dwarf mass of 0.69±0.13 M⊙

for CVs below the period gap (Smith & Dhillon, 1998). Although the white dwarf

in DV UMa is unusually massive, the assumption that we are observing the white

dwarf and not the boundary layer around the primary cannot cause this, as the white

dwarf mass derived would be in this case a lower limit. Also, Baptista et al. (2000)

point out that in short-period dwarf novæ (specifically OY Car, Z Cha and HT Cas;
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Wood & Horne, 1990) like OU Vir, XZ Eri and DV UMa the boundary layer is faint

(or absent), whereas longer-period dwarf novæ such as IP Peg (Wood & Crawford,

1986) and EX Dra (Baptista et al., 2000) usually have detectable boundary layers.

As an illustrative example, in the case of EX Dra, Baptista et al. (2000) conclude

that the white dwarf is surrounded by an extended boundary layer on the basis of the

implausibly low white dwarf masses implied by assuming otherwise and the observed

variability of both the flux and duration of the primary eclipse. Throughout this

thesis I assume that the central eclipsed object is indeed a white dwarf.

Light curve deconvolution

Once the white dwarf eclipse contact phases have been found, the white dwarf light

curve can be reconstructed and subtracted from the overall light curve, as illustrated

in figure 3.3. The procedure is as follows. The white dwarf flux is assumed to be zero

between the contact phases φ2 and φ3, as here the white dwarf is totally eclipsed.

The derivative between the contact phases is then numerically integrated. The white

dwarf flux is assumed to be constant outside eclipse, and is determined from the

mean of the integrated flux at contact phases φ1 and φ4. The result is symmetrized

about phase zero, and smoothed to obtain a noise-free estimate of the white dwarf

light curve. This can then be subtracted from the overall light curve to give the

light curve of the bright spot and disc. The white dwarf flux thus determined can

be used to determine its temperature and distance (see § 3.6).

3.3 Lfit method

Another way of determining the system parameters is to use a physical model of

the binary system to calculate eclipse light curves for each of the various compo-

nents. I used the technique developed by Horne et al. (1994) and described in detail
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Figure 3.3: Deconvolution of the white dwarf light curve of Z Cha from the mean
light curve. (a) shows the original mean light curve; (b) the smoothed light curve,
offset downwards by 0.5 mJy; (c) the derivative of the smoothed light curve, with a
spline fit to phases outside ingress and egress superimposed, both offset upwards by
2.75 mJy and multiplied by a factor of 10; (d) the reconstructed white dwrf eclipse,
offset downwards by 1 mJy; and (e) the original mean light curve after subtraction
of the white dwarf light curve, offset downwards by 3 mJy. The vertical lines mark
the contact phases of the white dwarf and bright spot. Figure from Wood et al.
(1986).
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therein. This model assumes that the eclipse is caused by the secondary star, which

completely fills its Roche lobe. A few changes were necessary in order to make the

model of Horne et al. (1994) suitable for my data. The most important of these was

the fitting of the secondary flux, prompted by the detection of a significant amount

of flux from the secondary in the i ′ band of DV UMa. The secondary flux is very

small in all the other bands.

The 10 parameters that control the shape of the light curve are as follows:

1. The mass ratio q.

2. The eclipse phase full-width at half-depth ∆φ.

3. The outer disc radius Rd/a.

4. The white dwarf limb darkening coefficient U1.

5. The white dwarf radius R1/a.

6. The bright spot scale SB/a. The bright spot is modelled as a linear strip

passing through the intersection of the gas stream and disc. The relative

intensity distribution along this strip is given by (X/SB)2e−X/SB, where X

is the distance along the strip, the maximum being at the intersection of the

bright spot and disc, at X = 2SB. The relative intensity I of the bright

spot is then modulated according to the orbital phase by a sine function. For

DV UMa this function was

I =











sin(θB + φ) if sin(θB + φ) > 0

0 otherwise
, (3.4a)
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where θB is as defined below. For XZ Eri a better fit was achieved using

I =











sin2(θB + φ) if sin(θB + φ) > 0

0 otherwise
. (3.4b)

7. The line along which, on the edge of the disc, the bright spot lies is tilted

by an angle θB, measured relative to the line joining the white dwarf and

the secondary star. The bright spot does not, therefore, necessarily emit its

anisotropic light (see below) in a direction normal to the edge of the accretion

disc. This allows adjustment of the phase of the orbital hump.

8. The fraction of bright spot light which is isotropic fiso. The bright spot emits a

fraction of its light isotropically, in all directions, and the remainder anisotrop-

ically, in a direction which determines the phase of the orbital hump maximum.

9. The disc exponent b, describing the power law of the radial intensity distribu-

tion of the disc. The relative intensity I at a radius R of the disc is I ∝ Rb+1.

10. A phase offset φ0.

The light curve D(φ) was modelled as a sum of multiple components (the white

dwarf, bright spot, accretion disc and red dwarf), the contribution of the first three

of which can vary with the orbital phase φ:

M(φ) =
n

∑

i=1

Li(φ), (3.5)

where M(φ) is the model flux at phase φ and Li(φ) is the flux of component i at

phase φ. Fitting of ellipsoidal variations made no significant improvement to the

overall fit, so I have assumed the flux from the secondary star to be constant. The

amoeba algorithm (downhill simplex; Press et al., 1986) was used to adjust selected
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parameters to find the best fit. The algorithm attempts to minimise χ2, the usual

goodness-of-fit statistic:

χ2 =
n

∑

j=1

(

Dj − Mj

σj

)2

. (3.6)

It is often useful to define a reduced χ2,

χ2
R =

χ2

n − ν
, (3.7)

where ν is the number of degrees of freedom. At each evaluation of the function M(φ)

the light curves of the individual components were scaled using a linear regression,

the shape of each light curve being set by the values of the parameters at that

time. A positivity constraint was imposed: whenever a negative flux was found for

a component, the flux of that component was set to zero and the fit was repeated

to determine the flux for the other components. The procedure did not iterate to

χ2
R = 1 due to the presence of flickering and other variability in the light curve not

allowed for in the model. Consequently, the algorithm was run until the parameters

output no longer changed significantly between iterations (i.e. the parameter change

was less than the typical uncertainty on each parameter; see below). Typically, a

minimum of 10 000 iterations were performed to produce the parameters presented

in this thesis.

The 1σ error on an individual parameter of a M-dimensional model fit is given

(Lampton et al., 1976) by the perturbation of that parameter necessary to increase

the χ2 of the fit by 1, i.e.

χ2 − χ2
min = ∆χ2 = 1. (3.8)

This is, of course, equivalent to finding the root of

f(χ2) = χ2 − χ2
min − 1. (3.9)
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The procedure I employed to determine the errors on each parameter was as follows.

I perturbed the parameter of interest from its best fit value by an arbitrary amount

(initially 5 per cent) and re-optimised the rest of them (holding the parameter of

interest, and any others originally kept constant, fixed). The amoeba algorithm

was allowed to iterate for 2100 iterations, then the new value of χ2 was computed.

If the root was not bracketed by the two values of χ2, i.e. χ2 − χ2
min < 1, then the

perturbation was increased by a factor of 4 until it was. A bisection method (Press

et al., 1986) was then used to find the value of the parameter in question which

gave the root of equation 3.9, with the value of χ2 at each step being computed as

described previously in this paragraph. The difference between the final, perturbed,

value of the parameter and its best fit value gave the 1σ error on that parameter.

3.4 Comparing the derivative and lfit methods

The methods discussed in the previous two sections, the derivative and lfit tech-

niques, were compared with each other using fake light curves.

Fake, noise-free light curves were kindly produced by Dr. Chris Watson using his

rochey code to specifications set out by myself. All other work in this section was

conducted by myself under the supervision of Dr. Vik Dhillon. Gaussian noise was

then added to the resultant light curve. The errors were of the form

σi = E
√

fif2 +
Ef2

10
, (3.10)

where E is an arbitrary number controlling the fractional error, fi the flux on data-

point i and f2 the flux on the second datapoint (chosen arbitrarily because it is out

of eclipse and not contaminated by the orbital hump). The first term scales the

error with the square root of the flux, as expected for shot noise, with the
√

f2 term
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ensuring that the signal-to-noise ratio of the second datapoint is ∼ 1
E

. The final

term prevents the error on a zero flux point being zero, which is both unphysical

and causes coding problems (mainly with dividing by zero). The noise added to the

data was

fi = fi + Rσi, (3.11)

where R is a normally-distributed random number with zero mean and unit variance.

Flickering was modelled by adding additional (Gaussian) noise to the light curve but

not increasing the errors. For all the fake light curves used in this section, E = 0.04

for the addition of both noise and flickering. The amplitude of the flickering scaled

with the flux level so that flickering during mid-eclipse was much less than that out

of eclipse. This is designed to reproduce the real behaviour of flickering, which is

observed to be greatly reduced during eclipse (e.g. Patterson, 1981; Bruch, 2000;

Baptista & Bortoletto, 2004).

The parameters used to produce the fake light curves used for the comparison of the

derivative and lfit methods are given in table 3.1. The properties of the various

fake light curves I used are given below:

1. A ‘normal’ light curve, with the ingress and egress of the white dwarf and

bright spot clear and distinct.

2. As 1, but with the ingress of the white dwarf and bright spot merged together,

as seen for IP Peg (whose parameters have been used to produce this light

curve).

3. The aim of these light curves is to investigate the case of the compact ob-

jects (the white dwarf and bright spot) being relatively faint. I would expect

that if the level of noise and/or flickering becomes greater than the amplitude

of the eclipse, then determination of the system parameters would become

difficult/impossible.
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(a) Faint white dwarf.

(b) Faint bright spot.

4. The aim of these light curves is to investigate what happens to the estimated

parameters when the assumption that the bright spot lies at the intersection

of the accretion disc and gas stream is broken. To this end:

(a) The bright spot is ahead of the impact region.

(b) The bright spot is behind the impact region.

5. These light curves have different accretion disc radii to check that both tech-

niques are effective over a range of parameters.

(a) A smaller disc radius, of 0.25a.

(b) A larger disc radius, of 0.36a.

The model used to produce the fake light curves was a grid of the accretion disc and

secondary star, with each element in the grid array having an adjustable intensity.

The secondary star was assumed to fill its Roche lobe, so the surface of the secondary

star is defined by the critical potential. The visibility of each grid element, or tile,

was tested at a given phase for a given mass ratio and orbital inclination, and a light

curve built up in this manner. The grid used for model 1 (described in table 3.1) is

illustrated in figure 3.4. The disc has a height of 0.0002a above the orbital plane,

with the rim of the disc being subdivided into tiles which can be used to model the

orbital hump. The white dwarf was modelled by increasing the intensity of the disc

tiles at the centre of the disc. The bright spot was modelled by a disc rim only.

Modelling the bright spot as a combination of the disc rim and tiles in the outer

annulus of the disc led to incorrect determinations of the disc radius and mass ratio.

This is because the disc rim is at the outer radius of the accretion disc, whereas,

since a tile is only flagged as eclipsed when its centre is eclipsed, the radius of the
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Figure 3.4: The model grid used to produce the fake data for comparing the results
of the derivative and lfit techniques. The origin is at the centre of mass; otherwise
the co-ordinate system is as described in chapter 1. Figure by Dr. Chris Watson.

outer annulus is slightly (the difference being half the width of the outer annulus)

smaller than the radius of the disc rim. The intensity of the secondary star was set

to zero in all models, as it is usually very faint in faint short-period dwarf novæ.

The parameters recovered from the various models are given in tables 3.2 and 3.3

for the lfit and derivative techniques, respectively. The light curve fits from the

lfit program are shown in figures 3.5–3.12.

The errors on the parameters as determined by lfit are clearly too small when

compared to the input parameters given in table 3.1. As such, they likely represent

the reproducibility of the fit to the data, rather than the standard deviation from
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Table 3.1: The input parameters of the fake light curves used for comparison of the derivative and lfit methods. The white dwarf
has in all cases a radius R1 = 0.02a and the bright spot Rbs = 0.04a. The disc radius is Rd = 0.3a for all the light curves except
models 5a and 5b. The relative contributions (in arbitrary units) of the white dwarf (WD), bright spot (BS), accretion disc (AD)
and red dwarf (RD) are also given.

Bright spot position Flux (arbitrary units)
Model q i(deg) ∆φ P (sec) x/a y/a WD BS AD RD

1 0.20 85.0◦ 0.0725 7200 0.2663 0.1381 13.00678 14.29689 2.45069 0
2 0.43 82.2◦ 0.0863 13669 0.2826 0.1006 13.9795 11.6358 3.79294 0
3a 0.20 85.0◦ 0.0725 7200 0.2663 0.1381 2.1678 14.29689 2.45069 0
3b 0.20 85.0◦ 0.0725 7200 0.2663 0.1381 13.00678 2.3828 2.45069 0
4a 0.20 85.0◦ 0.0725 7200 0.2472 0.1700 13.00677 14.30843 2.45069 0
4b 0.20 85.0◦ 0.0725 7200 0.2828 0.1000 13.00677 14.08273 2.45069 0
5a 0.20 85.0◦ 0.0725 7200 0.2006 0.1491 12.91617 11.92371 1.6998 0
5b 0.20 85.0◦ 0.0725 7200 0.3396 0.1195 12.92509 7.42059 3.51082 0
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Table 3.2: Reconstructed parameters from lfit.

Model number
Parameter 1 2 3

a b

Error (per cent) 4 4 4 4
Flickering
(per cent) 4 4 4 4

Inclination i 84.8◦ ± 0.1◦ 81.6◦ ± 0.1 84.77◦ ± 0.03◦ 86.2◦ ± 0.4◦

Mass ratio q 0.2035 0.455 0.20579 0.181
±0.0010 ±0.004 ±0.00014 ±0.006

Eclipse phase 0.07255 0.08629 0.072643 0.07252
width ∆φ ±0.00005 ±0.00004 ±0.00015 ±0.00005

Outer disc 0.2983 0.2912 0.29558 0.3215
radius Rd/a ±0.0013 ±0.0023 ±0.00026 ±0.0004

White dwarf
limb 0.5 0.5 0.5 0.5
darkening U1

White dwarf 0.0132 0.0106 0.0135 0.01376
radius R1/a ±0.0003 ±0.0003 ±0.0006 ±0.00029

Bright spot 0.01179 0.01135 0.01169 0.0123
scale SB/a ±0.00018 ±0.00026 ±0.00006 ±0.0006

Bright spot 119.42◦ 111.51◦ 119.41◦ 119.3◦

orientation θB ±0.08◦ ±0.16◦ ±0.012◦ ±0.5◦

Isotropic flux 0.0017 0.009 0.0006 0.013
fraction fiso ±0.0028 ±0.008 ±0.0013 ±0.015

Disc exponent b 0.16 ± 0.12 0.10 ± 0.3 0.10 ± 0.18 −0.49 ± 0.12
Phase offset φ0 0 0 0 0
χ2 of fit 14498 25940 18688 13127
Number of
datapoints ν 7199 13668 7199 7199

Flux
(arbitrary units)
White dwarf 13.08 ± 0.04 14.039 ± 0.038 2.199 ± 0.022 12.94 ± 0.03
Accretion disc 2.37 ± 0.04 3.59 ± 0.04 2.422 ± 0.028 2.50 ± 0.03
Secondary 0 0.042 ± 0.010 0.006 ± 0.008 0
Bright spot 14.288 ± 0.026 12.094 ± 0.024 14.289 ± 0.011 2.395 ± 0.020
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Table 3.2: Continued. Reconstructed parameters from lfit. No error estimates
could be determined for some parameters of model 4a, since the fit became unphys-
ical if left to iterate to convergence.

Model number
Parameter 4 5

a b a b

Error (per cent) 4 4 4 4
Flickering
(per cent) 4 4 4 4

Inclination i 89.7◦ 77.3◦ ± 0.1◦ 84.4◦ ± 0.1◦ 85.6◦ ± 0.2◦

Mass ratio q 0.157 0.5254 0.2128 0.1902
±0.0024 ±0.0013 ±0.0020

Eclipse phase 0.0725 0.07258 0.07259 0.07255
width ∆φ ±0.00005 ±0.00006 ±0.00006

Outer disc 0.2908 0.2635 0.2439 0.3629
radius Rd/a ±0.0011 ±0.0007 ±0.0007 ±0.0008

White dwarf
limb 0.5 0.5 0.5 0.5
darkening U1

White dwarf 0.01420 0.01137 0.0174 0.0137
radius R1/a ±0.00026 ±0.00021 ±0.0003 0.0004

Bright spot 0.0160 0.01448 0.00928 0.00612
scale SB/a ±0.0003 ±0.00016 ±0.00016 0.00020

Bright spot 126.95◦ 111.08◦ 127.94◦ 110.76◦

orientation θB ±0.09◦ ±0.08◦ ±0.11◦ ±0.16
Isotropic flux 0.030 0.0091 0.0013 0.018
fraction fiso ±0.003 ±0.0026 ±0.0027 ±0.006

Disc exponent b −0.70 ± 0.23 0.2 ± 0.4 −0.93 ± 0.13 −0.08 ± 0.15
Phase offset φ0 0 0 0 0
χ2 of fit 16399 14523 14385 13538
Number of
datapoints ν 7199 7199 7199 7199

Flux
(arbitrary units)
White dwarf 12.71 ± 0.06 13.28 ± 0.05 12.86 ± 0.04 12.97 ± 0.06
Accretion disc 2.14 ± 0.08 1.79 ± 0.06 1.76 ± 0.04 3.25 ± 0.09
Secondary 0.175 ± 0.017 0.273 ± 0.013 0 0.09 ± 0.03
Bright spot 14.658 ± 0.025 14.303 ± 0.028 11.898 ± 0.023 7.78 ± 0.03
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Table 3.3: Reconstructed parameters from the derivative method.

Model number
Parameter 1 2 3

a b

Error (per cent) 4 4 4 4
Flickering (per cent) 4 4 4 4
Inclination i 84.8◦ 81.9◦ 85.4◦ 88.0◦

Mass ratio q 0.206 0.470 0.200 0.169
∆φ 0.072649 0.088308 0.073344 0.073205
∆Rd/a 0.0326 0.0692 0.0314 0.1589
∆θ 9.4◦ 11.8◦ 16.1◦ 12.5◦

∆Z/a – – – –
∆Z2/a 0.0347 0.0586 0.0539 0.0987
Rd/a 0.3043 0.2944 0.3076 0.3394
θ 26.3◦ 19.4◦ 26.3◦ 23.5◦

Table 3.3: Continued. Reconstructed parameters from the derivative method.

Model number
Parameter 4 5

a b a b

Error (per cent) 4 4 4 4
Flickering (per cent) 4 4 4 4
Inclination i – 77.3◦ 86.8◦ 85.9◦

Mass ratio q < 0.164 0.53 0.195 0.185
∆φ 0.073344 0.072927 0.075149 0.072510
∆Rd/a – 0.0332 0.0293 0.0406
∆θ – 21.2◦ 21.5◦ 5.1◦

∆Z/a – 0.0346 – 0.0515
∆Z2/a – 0.0296 0.0421 0.0549
Rd/a – 0.2369 0.2460 0.3633
θ – 26.7◦ 37.9◦ 19.6◦
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the true values. It is probable that there is a systematic error present between the

model used to generate the light curves and the model used to reconstruct them.

This highlights the fact that any such model-fitting approach to the determination

of the system parameters will suffer from the applicability of the model: that is, one

does not know how far from reality the model deviates. One such likely discrepancy

is in the form of the bright spot intensity distribution. Lfit models this in the

eminently reasonable form given in § 3.3. If the intensity distribution of the bright

spot differs from this, however, then a systematic error will be introduced into the

estimate of the mass ratio due to the position of the centre-of-light of the bright

spot differing from that expected. Another possible explanation of the small errors

is that they may be due to the program having difficulty in iterating to χ2
min during

the bisection used to determine the errors.

I did not estimate uncertainties for the parameters produced by the derivative tech-

nique, as first, the dominant source of error is likely to be systematic differences

between the models used to produce and analyse the light curves and second, due

to the prohibitive amount of time it would have taken to produce and analyse the

multiple light curves necessary to determine the rms variations in the contact phases.

Models 1, 2, 3a, 4b, 5a, 5b and arguably 3b were satisfactorily reconstructed by both

the lfit and derivative methods. Model 4a was found to produce an unphysical light

curve with the derivative technique, since the constraints placed upon the eclipse

phase width ∆φ (by the white dwarf eclipse width) and the mass ratio q (by the

positions of the bright spot ingress and egress) were not consistent with an orbital

inclination i ≤ 90◦. The lfit method produced a very small mass ratio (as might be

expected, since a reduction in q moves the path of the gas stream further from the

white dwarf), but also a very high orbital inclination, which meant that the solution

found by the iterative procedure became unphysical if left to iterate towards an

optimum result. Model 4b was reconstructed with a lower orbital inclination, which
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was caused by the model fitting a larger mass ratio in order to place the bright spot

at the correct location. Models 5a and 5b were adequately reconstructed by each

technique, confirming the reliability of both over a range of different accretion disc

radii.

Comparison of the recovered parameters for models 3a and 3b leads to the conclusion

that the visibility of the bright spot is more important than the visibility of the white

dwarf. This is perhaps due to the fact that the white dwarf eclipse is symmetrical,

so the twin constraints of ingress and egress lead it to being much less susceptible to

noise in the data than the a symmetric light curve of the bright spot. The times of

ingress and egress of the bright spot are dependent on more parameters than those

of the white dwarf: the bright spot times depend on the mass ratio, the disc radius,

the phase offset and the orbital inclination, as opposed to the eclipse phase width,

the phase offset and the orbital inclination for the white dwarf.

The fluxes recovered for each component by the lfit method were generally in good

agreement with the input fluxes, as can be seen by comparison of the relevant figures

in tables 3.1 and 3.2. The largest discrepancies occur for models 4a and 4b, as might

be expected, since one of the basic assumptions of the method is deliberately broken

for both these models. Again, it appears that systematic errors frequently dominate,

a fact that should be borne in mind when fluxes derived in this way are used.

In conclusion, both techniques reproduced the system parameters well in all of the

realistic light curves (models 1, 2, 3a, 3b, 5a and 5b). The parameters for model 3b

were rather less accurate, as the bright spot was to some extent lost amongst the

noise. The errors determined by the lfit method (by increasing χ2 by 1) were too

small, suggesting that systematic errors introduced by differences between the as-

sumed model and the real case are the dominant source of error. Agreement between

the two methods was good for all the models investigated. Breaking the assumption

that the bright spot was at the intersection of the gas stream and accretion disc’s
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outer edge had predictable results: placing it ahead of the intersection led to too

small a mass ratio; behind too large a mass ratio.

These two techniques were also compared using real data, as discussed in § 5.3.3.
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Figure 3.5: Fake light curve produced as described in the text using the parameters
given in table 3.1 for model 1.

Figure 3.6: Fake light curve produced as described in the text using the parameters
given in table 3.1 for model 2.
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Figure 3.7: Fake light curve produced as described in the text using the parameters
given in table 3.1 for model 3a.

Figure 3.8: Fake light curve produced as described in the text using the parameters
given in table 3.1 for model 3b.
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Figure 3.9: Fake light curve produced as described in the text using the parameters
given in table 3.1 for model 4a.

Figure 3.10: Fake light curve produced as described in the text using the parameters
given in table 3.1 for model 4b.
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Figure 3.11: Fake light curve produced as described in the text using the parameters
given in table 3.1 for model 5a.

Figure 3.12: Fake light curve produced as described in the text using the parameters
given in table 3.1 for model 5b.
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3.5 Mass determination

The derivative and lfit techniques yield the system parameters relative to the

orbital separation (or the L1 distance). To determine the absolute system parameters

I have used the Nauenberg mass-radius relation for a cold, non-rotating white dwarf

(equation 1.15)1. If one sets R1/a = y, Kepler’s third law (equation 1.1) can be

rewritten in terms of the parameters R1 and y, giving another restriction on the

white dwarf radius:

R1 = y

(

GM1(1 + q)P 2
orb

4π2

)
1

3

. (3.12)

Equations 1.15 and 3.12 can be easily solved to give the system parameters. The

secondary radius R2 can be calculated by approximating it to the volume radius of

the Roche lobe (equation 1.4).

As the Nauenberg (1972) mass-radius relation assumes a cold white dwarf, I have

attempted to correct this relation to the approximate temperature given by a fit to

the deconvolved white dwarf fluxes (see below). Wood et al. (1989a) and Koester &

Schönberner (1986) note that the radius of a white dwarf at 104 K is about 5 per

cent larger than a cold white dwarf. To correct to the appropriate temperature from

104 K the white dwarf cooling curves of Wood (1995) have been used.

3.6 White dwarf model atmospheres

The temperature and distance of the white dwarf component can be determined

by fitting the fluxes from three filters to the spectrum of a blackbody or model

atmosphere.

1From here on, I refer to parameters measured in units of the orbital separation or L1 distance
as relative and those measured in solar units as absolute.
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The expected flux f from a blackbody Bν(λ, T ) in a passband with transmission

function P (λ) is (e.g. Wood et al., 1989a)

f =

∫

P (λ)Bν(λ, T )dλ/λ
∫

P (λ)dλ/λ
· πR2

1

D2
, (3.13)

where D is the distance to the star. By fitting a blackbody function to the white

dwarf flux in each passband the white dwarf temperature T1 and distance can be

determined. As a white dwarf spectrum is one of the closest astronomical approxi-

mations to a blackbody, this procedure is reasonable.

The white dwarf fluxes were also fitted to the hydrogen-rich, log g = 8 white dwarf

model atmospheres of Bergeron et al. (1995) by χ2 minimisation. The colour indices

quoted therein were converted to the SDSS system using the observed transforma-

tions of Smith et al. (2002). This procedure determined the temperature of the white

dwarf but not the distance, since the absolute magnitude (and hence the distance)

is much more heavily dependent on the exact value of log g than the colours (which

give the temperature). This latter method, however, will determine the white dwarf

temperature more accurately than a blackbody fit, as it will allow, for example, for

the Balmer jump in the white dwarf spectrum.

3.7 Eclipse mapping

In § 1.5.1 I discussed various theoretical models and predicted properties of accretion

discs, and alluded to a technique whereby the intensity distribution across the disc

could be uncovered. This technique, called eclipse mapping, is the subject of this

section.

The eclipse mapping method was developed by Horne (1985). It enables the light

distribution across the disc (including the contributions of the white dwarf and bright
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spot) of eclipsing systems to be mapped. The shape of the eclipse produced by the

occultation of the accretion disc by the red dwarf depends on the light distribution

across the disc. Unfortunately, as the eclipse light curve is one-dimensional, and the

light distribution across the disc is two-dimensional (in the approximation of a flat

disc), the solution is not unique. One possible solution to this is to use a model-

fitting approach, but this has the obvious disadvantage that it is model-dependent.

This problem becomes more acute when it is considered that our present knowledge

of accretion disc physics is incomplete. The departure of accretion discs in CVs

from axi-symmetry, due to the impact of the gas stream with the edge of the disc,

provide another problem for model-fitting procedures.

The above concerns naturally lead to the eclipse-mapping approach. In this method,

the intensity at each point of the accretion disc is an independent parameter. In the

simplest implementation of the method, the disc is modelled as a simple Cartesian

grid, co-rotating with the binary system. In this form, the eclipse mapping method

makes three basic assumptions:

1. The secondary star fills its Roche-lobe. There is ample evidence (e.g. ellip-

soidal variations from the distorted secondary star; Allan et al., 1996) for

mass transfer via Roche-lobe overflow (the very presence of the accretion disc

and bright spot imply it), so this assumption seems reasonably valid.

2. The intensity distribution is two-dimensional; it is constrained to the orbital

plane. Rutten (1998) found that this is a good assumption provided that the

inner disc regions are not obscured by the disc rim. The opening angles of

accretion discs in CVs are typically ∼ 5◦ (for example, the disc in the SW Sex

star DW UMa has an opening angle of ≥ 8◦; Knigge et al., 2000), so this

assumption is (reasonably) valid for orbital inclinations i . 85◦.

3. The emission is phase-independent (apart from the eclipse by the secondary
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star). This last assumption is the most problematic. Many CVs have orbital

humps due to anisotropic radiation from the bright spot, which violates this

assumption. In the following section I discuss how this may be accounted for.

The eclipse-mapping technique has since been further developed to allow spectral

eclipse mapping (Rutten et al., 1993, 1994), modelling of a three-dimensional accre-

tion disc (Rutten, 1998), fitting of multi-colour light curves by physical properties

of a model disc (so-called physical parameter eclipse mapping; see Vrielmann et al.,

2002) and mapping the spatial location of the flickering source in the discs of CVs

(Welsh & Wood, 1995; Bruch, 2000; Baptista & Bortoletto, 2004).

3.7.1 Theory

This section follows the derivations given by Skilling & Bryan (1984), Gull & Skilling

(1989, 1991) and Watson (2002).

Eclipse mapping requires that we use the observed data D to make inferences about

the various possible intensity distributions across the disc A,B,C . . . etc. Letting h

represent any of the hypotheses A,B,C . . ., we wish to calculate

P (h|D), (3.14)

which is the probability of h occurring, given D. The data, however, give

P (D|h), (3.15)

the likelihood of D occurring, given h. In order to reverse P (D|h) to obtain P (h|D),
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note that the probability of both h and D occurring is

P (h,D) = P (h)P (D|h) (3.16a)

= P (D)P (h|D), (3.16b)

where P (h) and P (D) are the probabilities of the prior h and the evidence D.

The prior probability term includes our prior expectations about possible intensity

distributions across the disc h before acquiring the data D. Rearranging the above

equations, we obtain Bayes’ theorem

P (h|D) =
P (h)P (D|h)

P (D)
. (3.17)

The selection of h proceeds by choosing that intensity distribution which maximises

the entropy (that is, is maximally non-committal). The entropy S(h) is defined in

this thesis as

S(h) =
n

∑

j=1

[

hj − dj − hj ln

(

hj

dj

)]

, (3.18)

where hj is the intensity of element j and dj is a default image to which the re-

construction will default in the absence of data. The default image may be used to

include prior knowledge of the likely distribution of the light across the disc. This is

discussed in more detail in the next section. The entropy measures the deviation of

the reconstructed intensity map hj with respect to the default map dj. The global

maximum of the entropy is therefore at h = d, where S = 0.

It can be shown (Gull & Skilling, 1989, 1991) that

P (h) ∝ exp(αS), (3.19)

where α is some constant. In order to be able to solve equation 3.17 we now require

only P (D|h).
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If the only variations in the observed data (the light curve) are due to the eclipse of

the disc by the secondary star, then the data D(φ) must be related to the intensity

distribution across the disc h(j) ≡ hj by

D(φ) =
n

∑

j=1

V (j, φ)h(j) ± σ(φ), (3.20)

where V (j, φ) is the fractional visibility of element j at phase φ and σ(φ) is the error

on D(φ). The above can be simplified to

oj = pj + σj, (3.21)

where oj and pj are the observed and predicted intensities for element j and σj is

the error on oj. If we assume that the errors are normally distributed, then

P (D|h) =
n

∏

j=1

(2πσ2
j )

−
1

2 exp

(−(pj − oj)
2

2σ2
j

)

, (3.22)

and therefore

P (D|h) ∝ exp(−χ2
R), (3.23)

where χ2
R is as defined in equation 3.7.

Equation 3.17 demonstrates that to find the most probable image h, the probability

P (h|D) must be maximised. Equations 3.19 and 3.23 show that this is equivalent

to minimising the quantity

χ2
R − αS. (3.24)

By minimising equation 3.24, the selected solution h is the one with the maximum

entropy consistent within the constraints imposed by the data. No additional as-

sumptions or biases are introduced by this method; this is the Principle of Maximum

Entropy.
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3.7.2 Practice

The development of the eclipse mapping code used in this thesis has been my own

work, except for the use of the memsys package, which was written by Skilling &

Bryan (1984). I chose to write my own eclipse mapping code in order to better un-

derstand the processes involved. I gratefully acknowledge the assistance of Dr. Chris

Watson during the early stages of development.

In this thesis, I use a simple Cartesian grid centred on the white dwarf, with the

co-ordinate system as defined in § 1.2. The length of the grid side Rg is chosen to be

of the order of or greater than the tidal radius Rtidal (§ 1.5.1, equation 1.23). The

centre of the ith tile is then given by

x(i) =

(

i − 0.5 − n aint

[

i − 1

n

]) (

2Rg

n

)

− Rg (3.25a)

y(i) = −
(

0.5 + aint

[

i − 1

n

])(

2Rg

n

)

+ Rg, (3.25b)

where n is the number of tiles per side and ‘aint’ denotes that its argument is

truncated (not rounded) to an integer.

The visibility function V (i, φ) in equation 3.20 is determined by use of the blink

subroutine discussed in § 3.2. This requires computation of the Earth vector Ê,

which is the vector pointing towards Earth from the grid element in question. In

the current co-ordinate system, the Earth vector is given by

Êx = cos(2πφ) sin i (3.26a)

Êy = − sin(2πφ) sin i (3.26b)

Êz = cos i. (3.26c)
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Using the position of the point at the centre of each tile to assess its visibility results

in

V (i, φ) =











0 if eclipsed

1 otherwise
. (3.27)

The accuracy of the visibility function V (i, φ) can be improved by either subdividing

the tiles into sub-tiles or increasing the number of tiles in the grid. In the former case,

the visibility function of a given tile at a given phase, V (i, φ), is given by the fraction

of its sub-tiles that are not eclipsed at their centre at that phase. Each memsys

iteration requires computation of the intensity of each tile, so this subdivision has

a computational advantage over merely increasing the number of tiles in the grid,

as the visibility function V (i, φ) only has to be calculated once, at the start of the

eclipse mapping procedure. As discussed below, subdivision of the tiles can also

eliminate memory problems encountered when dealing with large grid sizes.

The fineness of the grid has an optimum value, equal to the distance that the

projected shadow of the secondary star moves across the centre of the disc in one

phase step of the light curve (Baptista & Steiner, 1993). If the grid is too coarse, then

we recover less information than is possible; if it is too fine, then we are attempting

to fit the data in more detail than is warranted by the data, leaving room for noise

to be propagated into the reconstructed maps (and it is a waste of time and effort).

The optimum number of tiles per side of the grid N is given by (Baptista & Steiner,

1993)

N =
Ra(0.5 − 0.227 log q) sin i

RL1 tan ∆φ
, (3.28)

where R is the length of the side of the grid, RL1 is the distance to the inner

Lagrangian point from the white dwarf and ∆φ is the phase resolution of the data.

Due to constraints on the maximum size of the arrays used in my eclipse mapping

code, the maximum grid size was 77×77. If the optimum number of tiles was greater

than this number, the tiles were subdivided, as discussed above, and the number of
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tiles reduced accordingly.

The default map

The choice of default map has a critical impact on the quality of the reconstructions

obtained (see, for example Horne, 1985; Baptista, 2001). At first glance, the most

obvious choice for the default map is a uniform one. This is not, however, the best

choice, as it leads to a reconstructed image that is heavily distorted by criss-crossed

arcs. These result from the twin constraints on the reconstruction: the entropy and

the eclipse of the disc. The maximisation of entropy means that extreme intensities

are suppressed; the flux from a compact source such as the bright spot or the white

dwarf is distributed over a larger area. The constraints provided by the eclipse result

in the flux being spread along ingress and egress arcs that pass through the true

location of the compact source, as illustrated in figure 3.13.

Choosing a non-uniform default map allows prior expectation of the likely disc in-

tensity map to be included in the procedure. Baptista (2001) discusses some useful

prescriptions for the default, listed in table 3.4.

The default Dj usually takes the form of a weighted average of the intensities Ik of

the elements in the grid:

Dj =

∑

k ωjkIk
∑

k ωjk

, (3.29)

where ωjk is the user-defined weight function. It is ultimately via the weight function

that a priori information about the disc is included in the reconstruction. The

weight function is usually defined as a Gaussian point-spread function of width ∆.

One would expect the discs in CVs to be roughly axi-symmetric since the material

in the disc is, to a first approximation at least, in Keplerian orbits. By using the

prescriptions for the default map given in table 3.4 this expectation can be included
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Figure 3.13: Suppression of arcs in the reconstructed image. (a) The original accre-
tion disc image, with two Gaussian spots superimposed on a uniform background.
(b) The image obtained using the uniform default map. (c) The image obtained
using the default of full azimuthal smearing. Adapted from Horne (1985).
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Table 3.4: Prescriptions for weight functions ωjk. djk is the distance between pixels
j and k; Rj and Rk are the distances of pixels j and k from the origin, respectively;
θjk is the azimuthal angle between pixels j and k; and sjk = |Rjθj −Rkθk| is the arc
length between pixels j and k. 1–5 from Baptista (2001).

1) Most uniform map ωjk = 1

2) Smoothest map ωjk = exp

(

− d2

jk

2∆2

)

3) Most axi-symmetric map ωjk = exp
[

− (Rj−Rk)2

2∆2

R

]

(full azimuthal smearing)

4) Limited azimuthal smearing ωjk = exp

[

−1
2

{

(

Rj−Rk

∆R

)2
+

(

θjk

∆θ

)2
}]

(constant angle θ)

5) Limited azimuthal smearing ωjk = exp

[

−1
2

{

(

Rj−Rk

∆R

)2
+

(

sjk

∆s

)2
}]

(constant arc length s)

6) Limited azimuthal smearing ωjk = exp

[

−1
2

(

θjk

∆θ

)2
]

(for disc rim)

in the default map. The effect of this is that the entropy becomes insensitive to

structure on scales larger than ∆. Structure on small scales will be suppressed by

the entropy, whereas large-scale structure will be freely determined by the data. This

can be seen from study of the weight functions given in table 3.4. If the numerator

is much smaller than ∆ then the weight will be large; if the numerator is larger than

the denominator ∆ then the weight will be small. Figure 3.13 shows the effect of the

default of full azimuthal smearing (see table 3.4). Some remnants of the spurious

arcs remain, but they are greatly reduced in amplitude.

The default of full azimuthal smearing can result in distorted reconstructions of

discrete structures in the disc. For instance, the bright spot is often smeared out

into a ring of the same radial distance from the white dwarf as the bright spot.

In order to limit this distortion, a default map of limited azimuthal smearing can

be used. Two methods of achieving this have been proposed: a weight function of

constant angles (Rutten et al., 1993) and a weight function of constant arc length
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(Baptista et al., 1996). The default of constant angles gives better resolution in

the inner parts of the disc, whereas the default of constant arc length gives better

resolution in the outer parts of the disc (see Baptista (2001) and figure 3.14). For

the data presented in this thesis, it was found that the difference between the maps

reconstructed using the defaults of constant angles and constant arc length was

negligible, and therefore the default used throughout this thesis was that of limited

azimuthal smearing (constant angles).

A different default map was used for the disc rim to reflect its constant radial distance

from the centre of the grid and to allow the rim intensity to be independent of the

intensity distribution of the (x, y) grid. In order to fulfil this latter criterion, the

weight of each pixel in the disc rim with respect to each pixel in the (x, y) grid was

zero, and vice versa. The default chosen for the disc rim was number 6 in table 3.4,

with ∆θ(rim) = ∆θ(disc).

The orbital hump

The first method I attempted to use to correct for the orbital hump followed Baptista

et al. (2000), who fitted a spline function to phases outside eclipse, divided the light

curve by the fitted spline and scaled the result to the value of the spline function at

phase zero, in order to scale the light curve back to the original flux level (see also

Horne, 1985). This technique worked well on the light curve of IP Peg in outburst

to which Baptista et al. (2000) applied it, but it is not suitable for the light curves

of quiescent dwarf novæ which are the subject of this thesis. This is because by

fitting and dividing by a spline function we assume that all parts of the accretion

disc contribute equally to the anisotropic flux (the orbital hump). This is not the

case: the bright spot produces anisotropic radiation, whereas the white dwarf and

accretion disc do not (Horne, 1985; Bobinger et al., 1997).
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Figure 3.14: The effect of different weight functions on the default map. (a) shows
the original map, with three Gaussian spots. The remaining panels show the default
maps (note: not the reconstructed maps) produced from the map illustrated in panel
(a) by applying the weight functions (see table 3.4) of (b) full azimuthal smearing,
(c) constant angle θ and (d) constant arc length s. From Baptista et al. (1996).
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The method I eventually employed in order to model the orbital hump was to intro-

duce a disc rim (e.g. Bobinger et al., 1997). This rim is assumed to be of negligible

height (so that I still assume a flat disc) and is divided into m segments. The

visibility function V (i, φ) for the rim is given by

V (i, φ) =























0 if eclipsed

0 if sin(θ + φ) < 0

sin2(θ + φ) otherwise

, (3.30)

where θ is the angle between the position on the disc rim and the positive x -axis,

measured clockwise. The intensity of each element of the disc rim was fitted along

with the intensity of each of the Cartesian grid elements, and was found to model

the orbital hump very effectively. The number of elements used to model the disc

rim was 50 for all the reconstructions in this thesis. This number was chosen to be

high enough to effectively reproduce the orbital hump and low enough so that the

orbital modulation was reasonably smooth.

The contribution of the secondary star

The flux from the secondary star can have a detrimental effect on the quality of the

reconstructed map. This is because the relative eclipse depth is anti-correlated with

the eclipse width; any uneclipsed light breaks this anti-correlation. The additional

light is placed by the maximum entropy reconstruction in the parts of the map which

are constrained the least by the eclipse data, such as the parts of the accretion disc

farthest from the red dwarf (the ‘back’ of the disc). This is discussed in detail

by Rutten et al. (1992, 1994); Baptista et al. (1995, 1996). These authors find

that the contribution from the secondary can be estimated by maximum entropy

methods. First, the light curve can be offset by varying amounts and fitted using

the usual eclipse mapping procedure. The offset which allows the largest entropy
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to be achieved is then the uneclipsed light. Second, and equivalently, an additional

‘virtual pixel’ can be introduced into the grid. If the visibility function for this pixel

is unity at all phases, and its weight (refer to equation 3.29) with respect to all the

other pixels is zero, and unity with respect to itself, then from the definition of the χ2

statistic (equation 3.6) the contribution of this pixel to the entropy measure is zero,

and the iterative procedure to maximise the entropy proceeds as usual. The only

effect of this virtual pixel on the intensities of all other pixels in the reconstruction is

an offset, the magnitude of which is determined by the maximum entropy procedure

itself. This method of determining the contribution from the secondary star fails for

highly asymmetric accretion discs, as noted by Baptista et al. (1996). The spurious

structure introduced in the reconstructed map by the uneclipsed component mixes

with the asymmetric (bright spot) emission, forming a more azimuthally symmetric

structure in the disc. Due to the choice of an azimuthally symmetric default map,

this has the effect of increasing the entropy of the reconstructed map. The map

with the largest entropy value is therefore not that with the correct offset due to

the presence of uneclipsed light. This problem is particularly severe in the case of

the faint, short-period dwarf novæ such as XZ Eri and DV UMa studied in this

thesis, as the disc is effectively invisible in these objects, meaning that almost all

of the emission originates from the bright spot region: the disc emission is highly

asymmetric.

I have therefore subtracted the contribution to the total light from the secondary

star from the light curve prior to fitting. In the cases of XZ Eri and DV UMa,

the secondary contribution was determined from the lfit procedure. For all other

objects, the contribution of the secondary star was first estimated from the mid-

eclipse flux level, and fine-tuned by computing a series of eclipse maps with different

offset values and selecting the map with the least spurious structure. These offsets

are given in table 3.5.
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The iterative procedure

The memsys code iteratively adjusts the intensities of each element hj. The pro-

cedure begins with a uniform intensity distribution, in which each element has an

intensity equal to the maximum value of the light curve divided by the total number

of elements. This obviously gives a poor fit to the data. The code then iterates until

the desired χ2
R, known as χ2

R,aim, is achieved, subsequent iterations serving to max-

imise the entropy while keeping χ2
R fixed. The exit criterion, which when satisfied

signals that the final solution has been reached, is TEST < 10−3, where

TEST =
1

2

∣

∣

∣

∣

∆χ2
R

|∆χ2
R|

− ∆S

|∆S|

∣

∣

∣

∣

, (3.31)

provided that |χ2
R−χ2

R,aim| < 1 and that the entropy during the last five iterations has

not decreased by more than 0.5 per cent. When the entropy has been maximised,

TEST should be zero, since in this case both ∆χ2
R and ∆S will necessarily be

small. This definition of TEST is equivalent to that used internally by memsys:

TEST = 1− cos θ, where θ is the angle between the gradients of entropy S and χ2
R.

The reconstructed images are those that are closest to the default map from those

that are consistent with the data to χ2
R,aim.

The choice of χ2
R,aim affects the properties of the reconstructed map. If too large a

value is chosen, the map will not be well-constrained by the data (i.e. entropy will

dominate), and the features present will be smeared out by the effects of the default

map adopted. On the other hand, if too small a value of χ2
R,aim is used, then the

reconstructed map will be noisy, with a characteristic ‘grainy’ texture, the result of

trying to fit noise in the data. Note that the optimum value χ2
R,aim is usually greater

than unity due to the presence of flickering in the light curve resulting in the scatter

of the data points being greater than that implied by the errors on the data points.

To perform a maximum entropy reconstruction of the accretion disc, the program
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was first run with χ2
R,aim = 1. In almost all cases this χ2

R,aim was never achieved,

so the program was re-started with a value for χ2
R,aim adopted that was reached in

the previous attempt. The reconstructed image was visually inspected, the value of

χ2
R,aim adjusted and the code re-run until the resulting intensity map was judged to

be ‘non-grainy’ and the spurious arcs were minimised.

Testing of the eclipse mapping code

The eclipse mapping code was tested using the data for XZ Eri and DV UMa de-

scribed in table 2.1 and chapter 5. The positions of the white dwarf and bright spot

and the absence of a significantly luminous accretion disc formed the testing criteria.

The XZ Eri and DV UMa data were used instead of creating fake light curves due

to their high quality (especially for XZ Eri) and the fact that the system parameters

were determined to a high degree of accuracy from my previous work using lfit

(see § 5.3.2). The results of the eclipse mapping experiments are presented and

discussed in subsequent chapters. For ease of reference, the parameters used in each

reconstruction are given in table 3.5 below.
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Table 3.5: The parameters used in the maximum entropy reconstructions of the disc intensities. For each reconstruction, the
default map is number 4 with ∆θ = 0.7 radians and ∆R = 0.01a (see table 3.4). The size of the grid in each case is 0.6a × 0.6a.
The format of the quoted grid dimensions is x tiles × y tiles + disc rim tiles. The tiles in the x, y grid are subdivided as described
in § 3.7.2. Some light curves were rebinned by the factor shown (using a weighted mean) in order to reduce flickering.

Object Cycle Filter χ2
R,aim Grid Sub- Iterations Phase Secondary Binning Radius of

dimensions divisions range (mJy) factor disc rim (a)

XZ Eri all u ′ 1.15 59 × 59 + 50 2 33 all 0.0020 – 0.3
all g ′ 1.4 59 × 59 + 50 2 32 all 0.0029 – 0.3
all r ′ 2.5 59 × 59 + 50 2 36 all 0.0064 – 0.3

DV UMa all u ′ 1.4 71 × 71 + 50 6 60 −0.06 to 0.13 0.0027 – 0.31805
all g ′ 1.3 71 × 71 + 50 6 61 −0.06 to 0.13 0.00531 – 0.31805
all i ′ 7.0 71 × 71 + 50 6 87 −0.06 to 0.13 0.0680 – 0.31805

HT Cas 2002 data u ′ 2.8 75 × 75 + 50 7 28 −0.09 to 0.09 0.15 3 0.28
2002 data g ′ 24 75 × 75 + 50 7 29 −0.09 to 0.09 0.09 3 0.28
2002 data i ′ 7 75 × 75 + 50 7 31 −0.09 to 0.09 0.32 0 0.28

HT Cas 2003 data u ′ 1.4 75 × 75 + 50 7 71 −0.09 to 0.09 0.24 3 0.26
2003 data g ′ 15 75 × 75 + 50 7 74 −0.09 to 0.09 0.14 3 0.26
2003 data i ′ 6 75 × 75 + 50 7 134 −0.09 to 0.09 0.42 3 0.26

OU Vir 2002 5 18 u ′ 1 70 × 70 + 50 2 200 −0.06 to 0.1 0.06 – 0.2315
2002 5 18 g ′ 4.5 70 × 70 + 50 2 30 −0.06 to 0.1 0.06 – 0.2315
2002 5 18 r ′ 2.5 70 × 70 + 50 2 29 −0.06 to 0.1 0.11 – 0.2315

OU Vir 2003 5 22 u ′ 1.5 70 × 70 + 50 2 28 −0.06 to 0.1 0.04 – 0.2315
2003 5 22 g ′ 9 70 × 70 + 50 2 54 −0.06 to 0.1 0.024 – 0.2315
2003 5 22 i ′ 3.0 70 × 70 + 50 2 26 −0.06 to 0.1 0.09 – 0.2315

IR Com all u ′ 15 65 × 65 + 50 5 71 −0.06 to 0.1 0.27 2 0.3
all g ′ 250 65 × 65 + 50 5 73 −0.06 to 0.1 0.12 2 0.3
all i ′ 120 65 × 65 + 50 5 71 −0.06 to 0.1 0.35 2 0.3

GY Cnc all u ′ 8 74 × 74 + 50 9 49 all 0.35 – 0.3
all g ′ 60 74 × 74 + 50 9 51 all 0.37 – 0.3

2003 5 23 i ′ 11 74 × 74 + 50 9 53 all 2.1 – 0.3
2003 5 19 z ′ 4.0 74 × 74 + 50 9 56 all 2.2 – 0.3
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Chapter 4

OU Vir

The contents of this chapter have been published in the Monthly Notices of the

Royal Astronomical Society, 347, 1173 and 354, 1279 as ULTRACAM photometry

of the eclipsing cataclysmic variable OU Vir by Feline, Dhillon, Marsh, Stevenson,

Watson, & Brinkworth (2004b,c). The exceptions to this are the eclipse mapping

results presented in § 4.5, and the observations of 2003 May 18, which were over-

looked for publication due to an error in the hand-written observing logs. The data

were analysed using the derivative technique only, and not the lfit method, as

the significant night-to-night and short-term (flickering) variability meant that the

modelling approach of the latter technique was found to be unsuitable in this case.

The reduction and analysis of the data are all my own, as is the text below. Dr. Vik

Dhillon supervised all work presented here.

OU Vir is a faint (V∼ 18 mag; Mason et al., 2002) eclipsing CV with a period of

1.75 hr which has been seen in outburst and probably superoutburst (Vanmunster

et al., 2000), marking it as an SU UMa dwarf nova. Mason et al. (2002) presented

time-resolved, multi-colour photometry and spectroscopy of OU Vir, concluding that

the eclipse is of the bright spot and disc, but not the white dwarf.
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Table 4.1: Mid-eclipse timings of OU Vir, accurate to ±4 × 10−5 days.

Date HJD
u ′ g ′ r ′ i ′

2002 05 16 2452411.523977 2452411.523921 2452411.523892 –
2003 05 20 2452780.580157 2452780.580278 – 2452780.580217
2003 05 22 2452782.470534 2452782.470558 – 2452782.470509
2003 05 25 2452785.524083 2452785.524083 – 2452785.524255

The observations of OU Vir are summarised in table 2.1, and the data reduction

procedure is detailed in § 2.3. The light curves of OU Vir are shown in figure 4.1.

The data of 2002 May were obtained during the first night of commissioning of

ultracam and hence were adversely affected by typical commissioning problems,

chiefly excess noise in the u ′ band and limited time resolution due to the dead-time

between exposures. The data taken in 2003 had no such problems.

4.1 Light curve morphology

Mason et al. (2002) found that for OU Vir out of eclipse and during quiescence,

V = 18.08 mag and B − V = 0.14 mag, which corresponds to g′ ∼ 0.2 mJy (Smith

et al., 2002). Vanmunster et al. (2000) quote an outburst amplitude of approximately

4 magnitudes (corresponding to a peak g ′ flux of ∼ 8.4 mJy). OU Vir was observed

at quiescence in both 2002 and 2003, as can be readily seen by inspection of figure 4.1.

It is worth noting, however, that the 2003 observations took place about 18 days

after a superoutburst of OU Vir was first reported, on 2003 May 2 (Kato, 2003).

The light curves of 2002 May 16 (at phase ∼ −0.45) and 18 (phase ∼ 0.3) and

2003 May 20 (phase ∼ −0.2) shown in figure 4.1 show a feature which strongly

resembles a superhump, and suggests that the system may have recently undergone

a superoutburst in 2002 as well as 2003.
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Figure 4.1: The light curve of OU Vir. The r′, z ′ and i ′ data are offset vertically
upwards and the u ′ data are offset vertically downwards.
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Table 4.2: White dwarf contact phases, accurate to ±0.0006, and flux, accurate to ±0.01 mJy, of OU Vir.

Date Band φw1 φw2 φw3 φw4 φwi φwe Flux (mJy)

2002 05 16 u ′ −0.024414 −0.017578 0.018555 0.025391 −0.020508 0.022461 –
g ′ −0.027344 −0.018555 0.016602 0.025391 −0.022461 0.021484 –
r ′ −0.028320 −0.013672 0.012695 0.027344 −0.020508 0.020508 –

2003 05 20 u ′ −0.023438 −0.016602 0.018555 0.025491 −0.019531 0.022461 –
g ′ −0.025391 −0.017578 0.017578 0.024414 −0.021484 0.021484 –
i ′ −0.023438 −0.014648 0.016602 0.025391 −0.018555 0.021484 –

2003 05 22 u ′ −0.024414 −0.016602 0.017578 0.025391 −0.020508 0.021484 –
g ′ −0.026367 −0.018555 0.016602 0.024414 −0.022461 0.020508 –
i ′ −0.021484 −0.018555 0.016602 0.020508 −0.019531 0.018555 –

2003 05 25 u ′ −0.025391 −0.016602 0.014648 0.023438 −0.020508 0.019531 0.0537
g ′ −0.025391 −0.019531 0.016602 0.022461 −0.022461 0.019531 0.0519
i ′ −0.022461 −0.018555 0.017578 0.022461 −0.020508 0.020508 0.0146

Table 4.3: Bright spot contact phases of OU Vir, accurate to ±0.0006. The weakness of the bright spot feature and the presence
of flickering in the light curves meant that it was not possible to accurately determine the bright spot contact phases for all the
light curves.

Date Band φb1 φb2 φb3 φb4 φbi φbe

2003 05 22 g ′ −0.002930 0.002930 – – 0.000977 –
2003 05 25 u ′ −0.007813 0.002930 0.060547 0.065430 −0.002930 0.062500

g ′ −0.007813 0.002930 0.058594 0.068359 −0.002930 0.062500
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4.2 Eclipse contact phases

The white dwarf eclipse contact phases (defined in § 3.2) given in tables 4.1 and

4.2 were determined using the techniques described in § 3.2. Once the white dwarf

eclipse contact phases had been found, the white dwarf light curve was reconstructed

(as discussed in § 3.2) and subtracted from the overall light curve, as illustrated in

figure 4.2. The out-of-eclipse white dwarf fluxes thus found are given in table 4.2.

The white dwarf flux can be used to determine its temperature and distance; see

§ 3.6. Once this has been done the bright spot eclipse contact phases (given in

table 4.3) can be determined by a similar method (Wood et al., 1989a) and its light

curve removed from that of the disc eclipse. If successful, this process can be used

to determine the bright spot temperature. Unfortunately I was unsuccessful in my

attempts to do this, probably because flickering hindered accurate determination of

the bright spot flux and contact phases.

4.3 Orbital ephemeris

A linear least-squares fit to the times of mid-eclipse given in table 4.1 (calculated

using the techniques described in § 3.2 and taking the midpoint of the white dwarf

eclipse as the point of mid-eclipse) and those of Vanmunster et al. (2000, private

communication) gives the following ephemeris:

HJD = 2451725.03283 + 0.072706113 E.

7 ± 5

Errors of ±4×10−5 days were used for the ultracam data, and errors of ±7×10−4

days for the Vanmunster et al. (2000, private communication) data. This ephemeris
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Figure 4.2: White dwarf deconvolution of the g ′ band light curve of OU Vir of
2003 May 25. Top to bottom: The data after smoothing by a median filter; the
derivative after smoothing by a box car filter and subtraction of the spline fit to
this, multiplied by a factor of 5 for clarity; the reconstructed white dwarf light
curve, shifted downwards by 0.25 mJy; the original light curve minus the white
dwarf light curve after smoothing by a median filter, shifted downwards by 0.5 mJy.
The vertical lines show the contact phases of the white dwarf and bright spot eclipses
(see § 3.2), the dotted lines corresponding to φw1 . . . φw4, φb1 . . . φb4 and the solid
lines (labelled) to φwi, φwe and φbi, φbe. The bright spot ingress and egress are
plainly visible, quickly following the white dwarf ingress and egress respectively.
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was used to phase all of the data.

I do not present an O−C (observed times of mid-eclipse minus times of mid-eclipse

caluclated using an ephemeris) diagram as first, the mid-eclipse times reported by

Vanmunster et al. (2000, private communication) were times predicted by their

ephemeris for the cycle numbers they observed1, and second, the time resolution

of their data was too poor (between 30–160 seconds). Any O − C diagram would

therefore be meaningless.

4.4 System parameters

The derivation of the system parameters of OU Vir proceeds as discussed in § 3.2.

Figure 4.3 shows the theoretical gas stream trajectory for q = 0.175. As illustrated in

figures 4.4 and 4.5, which show expanded views of the bright spot region, I constrain

the light centre of the bright spot to be the point where the gas stream and outer

edge of the disc intersect. The 2003 bright spot timings thus yield a mass ratio of

q = 0.175 ± 0.025 and an inclination of i = 79.2◦ ± 0.7◦ for an eclipse phase width

∆φ = 0.0416 ± 0.0008. The errors are determined by the rms variations in the

measured contact phases.

Figures 4.4 and 4.5 show the eclipse constraints on the structure of the bright spot.

I use these to determine upper limits on the angular size and the radial and vertical

extent of the bright spot, with ∆θ, ∆Rd, ∆Z and ∆Z2 defined as in equations 3.3a–

3.3d. The mean position and extent of the bright spot are given in table 4.4. From

figures 4.4 and 4.5 I estimate visually that the gas stream passing through the light

centre of the bright spot could just touch the phase arcs corresponding to φb1 and

φb4 for a stream of circular cross-section with a radius ε/a = 0.0175 ± 0.0025. The

1This does not present a major problem with using them to determine the ephemeris, however,
because of the relative weightings of the times.
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bright spot appears to be more extended azimuthally than radially, which can be

understood by the shock front extending both up-disc and down-disc from the point

of impact. The size of the stream is similar to that expected from theoretical studies

(Lubow & Shu, 1975, 1976) and that obtained by studies of similar objects (Wood

et al., 1986, 1989a), so the assumption that the stream passes through the light

centre of the bright spot is reasonable.

Figure 4.6 shows the eclipse constraints on the radius of the white dwarf. Using the

mass ratio and orbital inclination derived earlier, I find that the white dwarf has a

radius of R1 = 0.013± 0.004a. An alternative possibility is that the sharp eclipse is

caused by a bright inner disc region or boundary layer of radius Rbelt = 0.023±0.010a

surrounding the white dwarf like a belt. These errors are calculated using the rms

variations in the measured contact phases. Another possibility is that the lower

hemisphere of the white dwarf is obscured by an optically thick accretion disc, which

would result in the white dwarf radius being R1 ≥ 0.013a. This can be seen from

inspection of figure 4.6 and considering that the phase arcs φw1 and φw4 in this case

correspond to the lowest unobscured sections of the white dwarf. As discussed in

§ 3.2, for a symmetrical light distribution centred on the origin, as we would expect

of a white dwarf, then the contact phases φwi and φwe lie half-way through the white

dwarf ingress and egress. Figure 4.6 illustrates that this is indeed the case, and so

it is probable that the lower half of the white dwarf remains unobscured.

The determination of the absolute system parameters assumes that the eclipse is

solely of a white dwarf. If the eclipse is actually of a belt and the white dwarf itself

is not visible, then the white dwarf radius must be smaller than Rbelt = 0.023a.

If the white dwarf does contribute significantly to the eclipsed light, then we have

the additional constraint that its radius must be R1 ≤ 0.013a, so that the white

dwarf mass given in table 4.5 is actually a lower limit. The only way to verify the

assumption that the central light source is the white dwarf alone is to measure the
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Figure 4.3: Trajectory of the gas stream from the secondary star for OU Vir, with
q = 0.175 and i = 79.2◦. Top: The system with the primary Roche lobe, L1 point
and disc of radius Rd = 0.2315a plotted. The positions of the white dwarf and
bright spot light centres corresponding to the observed ingress and egress phases for
q and i as above are also plotted. The circularisation radius (Verbunt & Rappaport,
1988, their equation 13) of Rcirc = 0.1820a is shown as a dashed circle. The stream
passes through the bright spot points (note that the timings of 2003 May 22 are of
the ingress only which prevents it from being plotted).
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Figure 4.4: Horizontal structure of the bright spot of OU Vir for q = 0.175, showing
the region on the orbital plane within which the bright spot lies. The light centre
LC is marked by a cross, surrounded by the inner solid box which corresponds to
the rms variations in position. The phase arcs which correspond to the bright spot
contact phases are shown as the outer solid box, with the rms variations in position
shown as the two dashed boxes. As all the timings of φb2 and φbe are identical, the
rms variations of φb1 and φbi, respectively, have been used instead. Intersections of
the phase arcs φbj and φbk are marked Ajk, with crosses. The stream trajectory and
disc of radius Rd = 0.2315a are also plotted as solid curves.

Figure 4.5: As figure 4.4, but showing the vertical structure of the bright spot. The
phase arcs are projected onto a vertical cylinder of radius 0.2315a (equal to that of
the disc), i.e. the x -axis is stepping around the edge of the disc. θ is in radians. The
intersections of the phase arcs φbj and φbk are marked Zjk, with crosses.
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Table 4.4: Mean position and extent of the bright spot of OU Vir as defined by
equations 3.3a–3.3c. ∆Z2 is calculated according to the definition used by Wood
et al. (1986), for ease of comparison.

∆Rd/a 0.0417
∆θ 15.17◦

∆Z/a 0.0200
∆Z2/a 0.0147
Rd/a 0.2315

θ 43.24◦

semi-amplitude of the radial velocity curve of the secondary star, K2, and compare it

to that predicted by the photometric model in table 4.5. One could also check if this

assumption is true using a longer baseline of quiescent observations, as one might

expect eclipse timings of an accretion belt to be much more variable than those

of a white dwarf. I note, however, that the white dwarf mass given in table 4.5

is consistent with the mean white dwarf mass of 0.69 ± 0.13 M⊙ for CVs below

the period gap (Smith & Dhillon, 1998). Also, as discussed in § 3.2, short-period

dwarf novæ like OU Vir tend to accrete directly onto the white dwarf, whereas

longer-period dwarf novæ usually have boundary layers. The system parameters of

OU Vir, assuming that the central eclipsed object is indeed a white dwarf, are given

in table 4.5.

The superhump period of OU Vir is Psh = 0.078 ± 0.002 days (Vanmunster et al.,

2000), which means that OU Vir lies 5σ off the superhump period excess–mass

ratio relation of Patterson (1998, his equation 8), with the superhump period excess

ǫ = (Psh − Porb)/Porb ∼ 0.073. However, it does not lie on the superhump period

excess-orbital period relation either, perhaps indicating that the current estimate of

the superhump period Psh is inaccurate.
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Figure 4.6: Projection of the white dwarf phase arcs of OU Vir onto the plane per-
pendicular to the line of sight. U and V are orthogonal co-ordinates perpendicular
to the line of sight, U being parallel to the binary plane. Solid curves correspond
to the contact phases of the white dwarf, dotted curves to the rms variations of the
phase arcs. The light centre is also plotted surrounded by the solid box correspond-
ing to the rms variations in phase. The projection of the white dwarf and accretion
belt centred on U, V = 0 are shown for R1 = 0.013a and Rbelt = 0.023a.
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Table 4.5: System parameters of OU Vir. The secondary radius given is the volume
radius of the secondary’s Roche lobe (Eggleton 1983), as defined by equation 1.4.
Parameters left blank in the right-hand column are independent of the model used.
The radial velocities quoted are estimated from the derived system parameters.

Parameter Nauenberg (cold) Nauenberg (21 700 K)

Inclination i 79.2◦ ± 0.7◦

Mass ratio q = M2/M1 0.175 ± 0.025
White dwarf mass M1/M⊙ 0.85 ± 0.20 0.90 ± 0.19
Secondary mass M2/M⊙ 0.15 ± 0.04 0.16 ± 0.04
White dwarf radius R1/R⊙ 0.0095 ± 0.0030 0.0097 ± 0.0031
Secondary radius R2/R⊙ 0.177 ± 0.024 0.181 ± 0.024
Separation a/R⊙ 0.73 ± 0.06 0.75 ± 0.05
White dwarf radial velocity K1/km s−1 75 ± 12 76 ± 12
Secondary radial velocity K2/km s−1 426 ± 6 434 ± 6
Outer disc radius Rd/a 0.2315 ± 0.0150
Distance D/pc 650 ± 210
White dwarf temperature T1/K 21 700 ± 1200

4.5 Eclipse mapping

The eclipse maps of OU Vir presented in figures 4.7–4.10 were produced using the

parameters given in table 4.5 and derived in § 4.4. The data of 2002 May 18 and

2003 May 22 were chosen as the eclipses are complete and relatively uncontaminated

by flickering. The data of different nights could not have been phase-folded since

there were significant differences between them. As expected for such short-period

systems, none of the reconstructed maps show evidence for disc emission. The

reconstructed maps of 2002 May 18 show a white dwarf at the centre of the disc and

a bright spot, which appears to be at a larger radius than that derived in the previous

section (which used the 2003 data). I speculate that this is due to an enlarged disc

radius because of the system being in decline from outburst. The feature near the

central white dwarf is probably spurious, due to the intersection of two phase arcs at

that point which intersect the white dwarf and bright spot. The reconstructed maps

of 2003 May 22 also show the central white dwarf and the bright spot. The bright

spot position (assuming that it is located at the intersection of the disc and the gas
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stream) for these data corresponds to a disc radius smaller than that of 2002 May

18, but still slightly greater than derived in § 4.4. This is possibly an effect of the

entropy smearing out the intensity distribution during the reconstruction process,

but is more likely indicative of the uncertainty in estimating the eclipse contact

phases in § 4.4, and possibly a change in the radius of the accretion disc over the

course of the 2003 observations.
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Figure 4.7: Top row. Left: a three-dimensional representation of the reconstructed
accretion disc for the 2002 May 18 u ′ data of OU Vir. The white dwarf is at the
origin, and the red dwarf at (x, y) = (a, 0). The rim intensity is shown on the edge
of the grid. Centre: a two-dimensional view of the reconstructed accretion disc as
before. The dot-dashed red lines are, from the centre out, the circularisation radius
(Verbunt & Rappaport, 1988, their equation 13), the disc radius (the same radius as
the rim), the tidal radius (Paczyński, 1977) and the primary star’s Roche lobe. The
solid red line is the trajectory of the gas stream. The rim intensity is shown to the
right. The scale is linear from zero to five per cent of the maximum, with areas with
intensities greater than 5 per cent of the maximum shown in black. Dark regions
are brighter. Right: The light curve (blue) with the fit (red) corresponding to the
intensity distribution shown on the left overlaid. The middle and bottom rows are
as the top, but for the g ′ and i ′ data, respectively. The system parameters adopted
for the reconstruction are q = 0.175, i = 79.2◦ and Rd = 0.2315a (the parameters
given in table 4.5).



136 CHAPTER 4. OU VIR

Figure 4.8: 3-dimensional plot of a blackbody fit to the reconstructed 2002 May 18
disc intensities of OU Vir shown in figure 4.7.
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Figure 4.9: As figure 4.7, but for, from top, the u′, g ′ and i ′ 2003 May 22 data
of OU Vir. The system parameters adopted for the reconstruction are q = 0.175,
i = 79.2◦ and Rd = 0.2315a (the parameters given in table 4.5).



138 CHAPTER 4. OU VIR

Figure 4.10: 3-dimensional plot of a blackbody fit to the reconstructed 2003 May
22 disc intensities of OU Vir shown in figure 4.9.



Chapter 5

XZ Eri and DV UMa

The contents of this chapter have been published in the Monthly Notices of the

Royal Astronomical Society, 355, 1 as ULTRACAM photometry of the eclipsing

cataclysmic variables XZ Eri and DV UMa by Feline, Dhillon, Marsh, & Brinkworth

(2004a). The exceptions to this are the eclipse mapping results presented at the end

of this chapter, in § 5.4. The system parameters were estimated using both the

derivative and lfit techniques, as the light curves of both objects were largely free

of flickering and were excellent candidates for model fitting. The reduction and

analysis of the data are all my own, as is the text below. Dr. Vik Dhillon supervised

all work presented here.

XZ Eri was first noted to be variable by Shapley & Hughes (1934). Until recently

(Howell et al., 1991; Szkody & Howell, 1992), however, XZ Eri had been rather poorly

studied. The presence of eclipses in the light curve of XZ Eri was discovered by

Woudt & Warner (2001). More recently, Uemura et al. (2004) observed superhumps

in the outburst light curve of XZ Eri, confirming its classification as an SU UMa

star.

Previous observations of DV UMa are summarised by Nogami et al. (2001), who also

139
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present light curves obtained during the 1995 outburst and the 1997 superoutburst.

Patterson et al. (2000) present superoutburst and quiescent photometry from which

they derive the system parameters. Mukai et al. (1990) estimated the spectral type

of the secondary star to be ∼M4.5 from spectroscopic observations.

In this chapter I present simultaneous three-colour, high-speed photometry of XZ Eri

and DV UMa. I derive the system parameters via two separate methods—timings

of the eclipse contact phases and fitting a parameterized model of the eclipse—and

discuss the relative merits of each.

The observations of XZ Eri and DV UMa are summarised in table 2.1, and the data

reduction procedure is detailed in § 2.3. The light curves of XZ Eri and DV UMa are

shown in figures 5.1 and 5.2, respectively. The observations of XZ Eri began at high

airmass (1.8)—this is evident in the improved quality of the second cycle, which was

observed at lower airmass. Note also that the XZ Eri data of 2003 November 13

have significantly worse time-resolution than those of DV UMa, despite both objects

being of similar magnitude. This is due to the higher brightness of the sky on 2003

November 13.

5.1 Light curve morphology

The light curve of XZ Eri shown in figure 5.1 is a classic example of an eclipsing

dwarf nova. Between phase −0.4 and the start of eclipse, the orbital hump is clearly

visible, with a brightening in g ′ flux of 0.025 mJy (0.5 mag). The light curve clearly

shows separate eclipses of the white dwarf and bright spot (see figure 1.15) in all

three colour bands.

During my observations XZ Eri had g′ ∼ 19.5 mag, falling to g′ ∼ 21.5 mag in

mid-eclipse. Comparing this to the previous (quiescent) observations of Woudt &
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Figure 5.1: The light curve of XZ Eri. The data are contiguous. The r ′ data are
offset vertically upwards and the u ′ data are offset vertically downwards.
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Figure 5.2: The light curve of DV UMa. The i ′ data are offset vertically upwards
and the u ′ data are offset vertically downwards.



ULTRACAM PHOTOMETRY OF ECLIPSING CVS 143

Warner (2001), who observed the system at V ∼ 19.2 mag, confirms that XZ Eri

was in quiescence at the time of our observations.

The light curve of DV UMa is presented in figure 5.2. Although the phase coverage

is less complete than for XZ Eri, the eclipse morphology is again typical of eclipsing

short-period dwarf novæ. The white dwarf and bright spot ingress and egress are

both clear and distinct. The orbital hump in DV UMa is much less pronounced than

in XZ Eri.

Howell et al. (1988) quoted V ∼ 19.2 mag in quiescence for DV UMa. This compares

to g′ ∼ 19 mag at the time of our observations, which fell to g′ ∼ 22 mag during

eclipse. DV UMa was therefore in quiescence over the course of our observations.

5.2 Orbital ephemerides

The times of mid-eclipse Tmid given in table 5.1 were determined as described in

§ 3.2, taking the midpoint of the white dwarf eclipse as the the point of mid-eclipse.

To determine the orbital ephemeris of XZ Eri I used the one mid-eclipse time of

Woudt & Warner (2001), the 25 eclipse timings of Uemura et al. (2004) and the

six times of mid-eclipse given in table 5.1. I used errors of ±5 × 10−4 days for the

Woudt & Warner (2001) data, ±1× 10−4 days for the Uemura et al. (2004) timings

and ±4 × 10−5 days for the ULTRACAM data. A linear least-squares fit to these

times gives:

HJD = 2452668.04099 + 0.061159491 E.

2 ± 5

The orbital ephemeris of DV UMa was determined in a similar way using the 18

mid-eclipse timings of Nogami et al. (2001), the 12 timings of Howell et al. (1988),
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Table 5.1: Mid-eclipse timings (HJD + 2 452 000) of XZ Eri and DV UMa, accurate
to ±4 × 10−5 days.

XZ Eri cycle u ′ g ′ r ′

4733 957.508910 957.508789 957.508870
4734 957.570081 957.570000 957.570000

DV UMa cycle u ′ g ′ i ′

69023 780.469225 780.469225 780.469225
69046 782.443801 782.443829 782.443801
69058 783.474062 783.474040 783.474040

the 12 timings of Patterson et al. (2000) and the nine times of mid-eclipse given in

table 5.1, with errors of ±5×10−4 days assigned to the data of Nogami et al. (2001)

and Howell et al. (1988), ±1 × 10−4 days to the data of Patterson et al. (2000) and

±4 × 10−5 days to the ULTRACAM data. A linear least-squares fit to these times

gives:

HJD = 2446854.66157 + 0.0858526521 E.

9 ± 14

These ephemerides were used to phase all of the data.

The O−C diagrams for XZ Eri and DV UMa produced using the above ephemerides

and times of mid-eclipse are shown in figures 5.3 and 5.4, respectively. Given the

distribution of the data points for XZ Eri, it is not possible to determine if the

system is undergoing period change or not. DV UMa, however, does show some

evidence for period change, with a quadratic least-squares fit to the above times

giving

HJD = 2446854.66283 + 0.085852592 E + 6.2 × 10−13 E2.

14 ± 5 ± 0.5

The O −C diagram produced using the quadratic ephemeris for DV UMa is shown
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Figure 5.3: The O − C diagram of XZ Eri produced using a linear ephemeris as
described in the text.

in figure 5.5. If accurate, the quadratic ephemeris implies a time scale for the period

change of DV UMa of

P/Ṗ = 3.25 × 107 yr.

I believe that the period change of DV UMa is unlikely to be real in the sense

that it represents the long-term evolutionary mean, and have therefore opted to

use the linear ephemeris for DV UMa throughout this thesis. The reasons for this

are two-fold. First, the eclipse timings of CVs often exhibit considerable ‘wander’

(e.g. IP Peg, Wood et al., 1989b), the cause of which is unclear1. Second, the time

resolution of the observations of Howell et al. (1988), which are the critical evidence

for period change in the system, is comparable to the O − C residuals for their

observations shown in figure 5.4.

1This could be due to the presence of a third body in the system, a circumbinary disc or
solar-type activity cycles of the secondary star.
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Figure 5.4: The O − C diagram of DV UMa produced using a linear ephemeris as
described in the text.

Figure 5.5: The O − C diagram of DV UMa produced using a quadratic ephemeris
as described in the text.
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Figure 5.6: Top row: Trajectory of the gas stream from the secondary star for (left)
XZ Eri (q = 0.117, i = 80.3◦, Rd/a = 0.300 and Rcirc/a = 0.217) and (right) for
DV UMa (q = 0.148, i = 84.4◦, Rd/a = 0.322 and Rcirc/a = 0.196). The Roche
lobe of the primary, the position of the inner Lagrangian point L1 and the disc of
radius Rd are all plotted. The positions of the white dwarf and bright spot light
centres corresponding to the observed ingress and egress phases are also plotted.
The circularisation radius Rcirc (Verbunt & Rappaport, 1988, their equation 13) is
shown as a dashed circle, and the tidal radius (Paczyński, 1977) as a dot-dashed
circle. Bottom row: White dwarf light curve deconvolution of (left) the g ′ band
light curve of XZ Eri on 2003 November 13 (cycle 4733) and (right) the g ′ band
light curve of DV UMa on 2003 May 23. Top to bottom: The data after smoothing
by a median filter; the derivative after smoothing by a box-car filter and subtraction
of a spline fit to this, multiplied by a factor of 1.5 for clarity; the reconstructed white
dwarf light curve, shifted downwards by 0.075 mJy; the original light curve minus
the white dwarf light curve after smoothing by a median filter, shifted downwards by
0.11 mJy. The vertical lines show the contact phases of the white dwarf and bright
spot eclipses, the dotted lines corresponding to φw1, . . . , φw4, φb1, . . . , φb4 and the
solid lines (labelled) to φwi, φwe and φbi, φbe. The bright spot ingress and egress are
plainly visible in the light curves of both objects, following the white dwarf ingress
and egress, respectively.
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Figure 5.7: Horizontal structure of the bright spot of XZ Eri for q = 0.117, showing
the region on the orbital plane within which the bright spot lies. As figure 4.4,
except that the disc radius is Rd = 0.3a.

Figure 5.8: Vertical structure of the bright spot of XZ Eri for q = 0.117. The phase
arcs are projected onto a vertical cylinder of radius 0.3a (equal to that of the disc).
Otherwise as figure 4.5.
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Figure 5.9: Horizontal structure of the bright spot of DV UMa for q = 0.148, showing
the region on the orbital plane within which the bright spot lies. As figure 4.4, except
that the disc radius is Rd = 0.322a.

Figure 5.10: Vertical structure of the bright spot of DV UMa for q = 0.148. The
phase arcs are projected onto a vertical cylinder of radius 0.322a (equal to that of
the disc). Otherwise as figure 4.5.
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5.3 Light curve decomposition

5.3.1 The derivative method

The eclipse contact phases given in tables 5.2 and 5.3 were determined using the

derivative of the light curve, as described in § 3.2. In the following analysis I have

combined the timings of all three colour bands for each target in order to increase

the accuracy of the results.

Using the techniques described in § 3.2, for the mean eclipse phase width of ∆φ =

0.0359 ± 0.0008, the eclipse timings of XZ Eri (tables 5.2 and 5.3) yield the mass

ratio, inclination and relative disc radius given in table 5.7. The results for DV UMa

for the mean eclipse phase width of ∆φ = 0.0636±0.0007 are also given in table 5.7.

The errors on these parameters are determined by the rms variations in the measured

contact phases. I use the bright spot eclipse timings to determine upper limits on

the angular size and the radial and vertical extent of the bright spots, defining ∆θ,

∆Rd, ∆Z and ∆Z2 as in equations 3.3a–3.3d. The mean position and extent of

the bright spots thus derived are given in table 5.4. The eclipse constraints on the

horizontal and vertical extent of the bright spots of XZ Eri and DV UMa are given

in figures 5.7–5.10.

Using the mass ratio and orbital inclination given in table 5.7 and the eclipse

constraints on the radius of the white dwarf (table 5.2), I find that the white

dwarf in XZ Eri has a radius of R1/a = 0.012 ± 0.002. For DV UMa I obtain

R1/a = 0.0075 ± 0.0020. I will continue under the assumption that the eclipsed

central object is a bare white dwarf. This assumption and its consequences are

discussed in more detail in § 3.2 and § 7.1.2.

The fluxes given in table 5.2 were fitted to the hydrogen-rich, log g = 8 white

dwarf model atmospheres of Bergeron et al. (1995), as discussed in § 3.6. The
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colour indices quoted therein were converted to the SDSS system using the observed

transformations of Smith et al. (2002). The white dwarf temperatures T1 thus

calculated are given in table 5.7.

To determine the remaining system parameters of XZ Eri and DV UMa I used the

Nauenberg mass–radius relation (equation 1.15) and approximated the secondary

radius by its volume radius, as described in § 3.5. Because the Nauenberg mass-

radius relation assumes a cold white dwarf, I have attempted to correct this to a

temperature of T1 ∼ 15 000 K for XZ Eri and to T1 ∼ 20 000 K for DV UMa, the

approximate temperatures given by the model atmosphere fit. The radius of the

white dwarf at 10 000 K is about 5 per cent larger than for a cold (0 K) white

dwarf (Koester & Schönberner, 1986). To correct from 10 000 K to the appropriate

temperature, the white dwarf cooling curves of Wood (1995) for M1/M⊙ = 1.0, the

approximate masses given by the Nauenberg relation, were used. This gave total

radial corrections of 6.0 and 7.0 per cent for XZ Eri and DV UMa, respectively.

5.3.2 A parameterized model of the eclipse

The system parameters of XZ Eri and DV UMa were also determined by fitting the

phase-folded light curves using a parameterized model of the eclipse. The lfit code,

developed by Horne et al. (1994) and described in detail in § 3.3, was used.

The data were not good enough to determine the limb-darkening coefficient U1

accurately, so this was held at a typical value of 0.5 for each fit. The disc parameter

for DV UMa was held fixed at b = 1.0 as it was too faint to be well constrained.

The procedure discussed in § 3.3 failed to find the likely error for the disc exponent

b of the u ′ band of XZ Eri, as the disc flux is small in this case and the light curve

noisy, so perturbation of the parameter made virtually no difference to the χ2 of the

fit.
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Table 5.2: White dwarf contact phases, accurate to ±0.0006 (XZ Eri) and ±0.0005 (DV UMa), and out-of-eclipse white dwarf
fluxes of XZ Eri and DV UMa. The errors on the fluxes are ±0.001 mJy.

Cycle Band φw1 φw2 φw3 φw4 φwi φwe Flux (mJy)

XZ Eri
4733 u ′ –0.020996 –0.015625 0.016113 0.022461 –0.018555 0.018555 0.0434

g ′ –0.022461 –0.011719 0.012207 0.020020 –0.018555 0.017578 0.0466
r ′ –0.022461 –0.013184 0.013184 0.020020 –0.019531 0.016113 0.0441

4734 u ′ –0.018066 –0.014160 0.010742 0.020020 –0.017090 0.017578 0.0341
g ′ –0.022461 –0.013184 0.013672 0.021484 –0.019531 0.017578 0.0531
r ′ –0.022461 –0.013184 0.015137 0.020020 –0.017090 0.017578 0.0375

DV UMa
69023 u ′ –0.033850 –0.030644 0.030276 0.033482 –0.031445 0.032680 0.0465

g ′ –0.033850 –0.030644 0.030276 0.033482 –0.031445 0.032680 0.0373
i ′ –0.033048 –0.029842 0.030276 0.033482 –0.030644 0.031879 0.0245

69046 u ′ –0.032798 –0.030132 0.031210 0.033210 –0.031465 0.031877 0.0451
g ′ –0.033467 –0.030132 0.031210 0.033879 –0.032132 0.032543 0.0435
i ′ –0.032798 –0.030132 0.030544 0.033210 –0.030799 0.031877 0.0239

69058 u ′ –0.032691 –0.030564 0.030612 0.032206 –0.030564 0.032206 0.0356
g ′ –0.033224 –0.030564 0.030612 0.032739 –0.031097 0.032206 0.0318
i ′ –0.033755 –0.030564 0.031142 0.033270 –0.032161 0.032739 0.0312
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Table 5.3: Bright spot contact phases of XZ Eri and DV UMa, accurate to ±0.0006
(XZ Eri) and ±0.0005 (DV UMa).

Cycle Band φb1 φb2 φb3 φb4 φbi φbe

XZ Eri
4733 u ′ –0.000977 0.006836 0.064941 0.067871 0.002930 0.066406

g ′ 0.000000 0.006836 0.069336 0.074219 0.003906 0.073242
r ′ –0.000977 0.006836 0.069336 0.073242 0.001465 0.070313

4734 u ′ –0.000977 0.006836 0.063965 0.081055 0.002930 0.070801
g ′ –0.000977 0.006836 0.065430 0.070801 0.001465 0.067871
r ′ 0.000488 0.005859 0.065430 0.069336 0.002930 0.067871

DV UMa
69023 u ′ –0.018620 –0.009803 0.079171 0.083179 –0.013811 0.082378

g ′ –0.016215 –0.011406 0.079171 0.083179 –0.013811 0.080775
i ′ –0.017017 –0.009001 0.078370 0.085584 –0.013009 0.079973

69046 u ′ –0.016797 –0.012129 0.079884 0.085885 –0.014131 0.080553
g ′ –0.018130 –0.010129 0.079884 0.084552 –0.014131 0.081886
i ′ –0.022131 –0.006127 0.081220 0.083219 –0.014797 0.081886

69058 u ′ –0.015671 –0.009819 0.079019 0.080613 –0.014074 0.079550
g ′ –0.015671 –0.010883 0.079019 0.081680 –0.013541 0.079550
i ′ –0.014604 –0.010883 0.077955 0.083274 –0.013010 0.078486

The results of the model fitting are given in tables 5.5 and 5.6, and are shown

in figure 5.11. Each passband was fitted independently, as there were found to be

significant differences between many of the optimum parameters for each band. This

is to be expected for parameters such as the bright spot scale SB, where one would

anticipate that the cooler regions are more extended than the hotter ones (as seen

for DV UMa). We would, of course, expect the mass ratio to remain constant in all

three passbands for each object, which it indeed does.

The results of a white dwarf model atmosphere fit (Bergeron et al., 1995) to the

fluxes fit by the model in each passband are given in table 5.7. I have used the white

dwarf cooling curves of Wood (1995) for M1/M⊙ = 0.75 (interpolating between 0.7

and 0.8) and M1/M⊙ = 1.0, the approximate masses found using the Nauenberg

relation for XZ Eri and DV UMa, to give radial corrections of 7.6 and 7.0 per cent,

respectively. These were used to determine the absolute system parameters given in
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table 5.7.

I note that the higher signal-to-noise light curves of the i ′, r ′ and g ′ bands have

χ2/ν ≫ 1 (see tables 5.5 and 5.6). This is because these data are dominated by

flickering, not photon noise, unlike the u ′ data. If we had enough cycles to completely

remove the effects of flickering we would expect, for an accurate model, to achieve

χ2/ν = 1.

The quality of the light curve fits (figure 5.11 and tables 5.5 and 5.6) are gener-

ally excellent. Apart from longer-term variations not allowed for by the model (for

example, an overall brightening of the accretion disc), the only feature not satisfac-

torily reproduced is the bright spot egress of DV UMa. I suspect that this is due to

the presence of ellipsoidal variations of the secondary star, which has the greatest

contribution in this filter. Since the amplitude of the ellipsoidal modulation is at a

minimum at phase zero, this will tend to enhance the amplitude of the orbital hump

and shift the peak of the orbital hump towards the peak of the ellipsoidal modula-

tion, at phase −0.5. In the case of the i′ data of DV UMa shown in figure 5.11 the

result of the algorithm trying to fit the increased flux at phases . −0.1 is to worsen

the fit to the part of the orbital hump immediately following the egress of the bright

spot. The contribution of the (M4.5; Mukai et al., 1990) secondary star in the i′

band of DV UMa is comparable to that of the (M5.4; Marsh, 1990) secondary star of

HT Cas (see also chapter 6). Due to the reason outlined above, and since not all of

the orbital cycle of DV UMa was observed, the parameters that are constrained by

the orbital hump are rather more uncertain for DV UMa than they are for XZ Eri.

This may introduce some systematic errors into the estimation of the bright spot

orientation θB, the isotropic flux fraction of the bright spot fiso and the bright spot

flux.
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Figure 5.11: Left: the phase-folded u ′, g ′ and r ′ light curves of XZ Eri, fitted
separately using the model described in Section 5.3.2. Right: the phase-folded u ′, g ′

and i ′ light curves of DV UMa. The data (black) are shown with the fit (red) overlaid
and the residuals plotted below (black). Below are the separate light curves of the
white dwarf (blue), bright spot (green), accretion disc (purple) and the secondary
star (orange). Note that the disc in both objects is very faint, as is the secondary
(except for the i ′ band of DV UMa). The differing phase coverage of each night’s
observations of DV UMa accounts for the uneven appearance of the data.
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Table 5.4: Mean position and extent of the bright spots of XZ Eri and DV UMa, as
defined in § 3.2.

XZ Eri DV UMa

∆Rd/a 0.0378 0.0258
∆θ 8.73◦ 7.57◦

∆Z/a 0.0174 0.0399
∆Z2/a 0.0161 0.0217
Rd/a 0.300 0.322

θ 34.53◦ 27.47◦

5.3.3 Comparison of methods

I have determined the system parameters of the eclipsing dwarf novæXZ Eri and

DV UMa through two methods: the derivative method of Wood et al. (1986) and

the parameterized model technique of Horne et al. (1994). I now proceed to compare

these two techniques, first noting that the system parameters determined by each

(given in table 5.7) are generally in good agreement.

Given data with an excellent signal-to-noise ratio (S/N) and covering many phase-

folded cycles, the measurement of the contact phases from the light curve derivative

is capable of producing accurate and reliable results (e.g. Wood et al., 1989a). It

is less dependable with only a few cycles, however, even if they are individually of

high S/N. This is due to flickering having the effect of partially masking the exact

location of the contact phases φ1, . . . , φ4. This problem will affect the values for

the deconvolved fluxes of each component and the constraints on the size of the

white dwarf and bright spot, which are used to determine the individual component

masses. The mid-points of ingress and egress, especially those of the white dwarf, are

generally still well determined, since the signal (a peak in the derivative of the light

curve) is large due to the rapid ingress and egress of the eclipsed body. This makes

the determination of the mass ratio and the orbital inclination relatively simple and

reliable. It also means that this technique is well suited to determining the times of
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Table 5.5: Parameters of XZ Eri fitted using a modified version of the lfit model of
Horne et al. (1994) described in § 3.3. The fluxes of each component are also shown.
XZ Eri has been fitted by phase-folding the two eclipses and binning by two data
points. Note that the orbital inclination i is not a fit parameter but is calculated
using q and ∆φ.

Parameter XZ Eri
u ′ g ′ r ′

Inclination i 80.4◦ ± 0.8◦ 80.1◦ ± 0.1◦ 80.4◦ ± 0.2◦

Mass ratio q 0.11 ± 0.02 0.116 ± 0.003 0.107 ± 0.002
Eclipse phase 0.0342 0.03362 0.0333
width ∆φ ±0.0007 ±0.00021 ±0.0003

Outer disc
radius Rd/a 0.307 ± 0.011 0.295 ± 0.003 0.316 ± 0.005

White dwarf
limb 0.5 0.5 0.5
darkening U1

White dwarf
radius R1/a 0.019 ± 0.002 0.0175 ± 0.0006 0.0195 ± 0.0010

Bright spot
scale SB/a 0.014 ± 0.010 0.013 ± 0.002 0.0147 ± 0.0008

Bright spot
orientation θB 134.1◦ ± 1.0◦ 141.9◦ ± 0.3◦ 141.4◦ ± 0.3◦

Isotropic flux
fraction fiso 0.14 ± 0.03 0.140 ± 0.008 0.2294 ± 0.0015

Disc exponent b 0.74965 0.4 ± 2.1 0.3 ± 0.3
Phase offset φ0 16 × 10−4 16.3 × 10−4 17.0 × 10−4

±3 × 10−4 ±0.8 × 10−4 ±1.2 × 10−4

χ2 of fit 656 897 1554
Number of
datapoints ν 611 611 611

Flux (mJy)
White dwarf 0.0453 ± 0.0011 0.0510 ± 0.0004 0.0443 ± 0.0004
Accretion disc 0.001 ± 0.003 0.0033 ± 0.0009 0.0000 ± 0.0010
Secondary 0.0020 ± 0.0019 0.0029 ± 0.0006 0.0064 ± 0.0007
Bright spot 0.0273 ± 0.0005 0.03545 ± 0.00018 0.0343 ± 0.0002
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Table 5.6: Parameters of DV UMa fitted using lfit. DV UMa has been fitted
by phase-folding all three eclipses and binning by two data points. Otherwise as
table 5.5.

Parameter DV UMa
u ′ g ′ i ′

Inclination i 83.8◦ ± 0.2◦ 84.3◦ ± 0.1◦ 84.3◦ ± 0.1◦

Mass ratio q 0.159 ± 0.003 0.1488 ± 0.0011 0.153 ± 0.002
Eclipse phase 0.06346 0.06352 0.06307
width ∆φ ±0.00017 ±0.00007 ±0.00015

Outer disc
radius Rd/a 0.317 ± 0.004 0.32278 ± 0.00016 0.31272 ± 0.00017

White dwarf
limb 0.5 0.5 0.5
darkening U1

White dwarf
radius R1/a 0.0091 ± 0.0016 0.0092 ± 0.0004 0.0082 ± 0.0014

Bright spot
scale SB/a 0.0150 ± 0.0010 0.0211 ± 0.0002 0.049 ± 0.003

Bright spot
orientation θB 142.0◦ ± 0.8◦ 137.75◦ ± 0.09◦ 169.4◦ ± 0.6◦

Isotropic flux
fraction fiso 0.157 ± 0.009 0.1989 ± 0.0019 0.262 ± 0.004

Disc exponent b 1. 1. 1.
Phase offset φ0 2.5 × 10−4 5.48 × 10−4 1.7 × 10−4

±0.9 × 10−4 ±0.10 × 10−4 ±0.7 × 10−4

χ2 of fit 1059 6873 4332
Number of
datapoints ν 636 636 636

Flux (mJy)
White dwarf 0.0496 ± 0.0008 0.0415 ± 0.0002 0.0269 ± 0.0004
Accretion disc 0.0131 ± 0.0015 0.0069 ± 0.0004 0.0065 ± 0.0007
Secondary 0.0027 ± 0.0007 0.00531 ± 0.00018 0.0680 ± 0.0003
Bright spot 0.0882 ± 0.0005 0.0879 ± 0.00014 0.1157 ± 0.0004
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mid-eclipse in order to calculate the ephemeris.

I believe that the differences between the component masses and radii of XZ Eri

determined by each technique (table 5.7) are due to the above effect of flickering. The

mass ratios quoted are consistent with each other, but the relative white dwarf radius

estimated from the derivative method is somewhat smaller than that determined

from the parameterized model (R1/a = 0.012 ± 0.002 and R1/a = 0.0181 ± 0.0005,

respectively). This also affects the estimates of the absolute radii and masses.

For the purpose of determining the system parameters I prefer the parameterized

model technique over the derivative method. This is because the former constrains

the parameters using all the points in the light curve to minimise χ2. This procedure

has several advantages:

1. The value of χ2 provides a reliable estimate of the goodness of fit which is used

to optimise the parameter estimates. The measurement of the contact phases

and subsequent deconvolution of the light curves in the derivative method

is not unique (it is affected by the choice of box-car and median filters, for

instance), and this technique lacks a comparable merit function.

2. Rapid flickering and photon noise during the ingress and/or egress phases are

less problematic for the parameterized model as the light curves are evaluated

using all the data points, not just the few during ingress and egress.

3. The above points indicate that the parameterized model technique requires

fewer cycles to obtain accurate results. This is indeed what I found in practice,

meaning that this method could be applied to each passband separately to

investigate the temperature dependence of each parameter, if any.

4. The bright spot egress in particular is often faint (due to foreshortening) and

difficult to reconstruct using the derivative method. The parameterized model
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method is also likely to be easier to apply to cases where the ingress of the

white dwarf and bright spot are merged, as seen in IP Peg (Wood et al., 1986)

and EX Dra (Baptista et al., 2000).

For these reasons, I believe that the results given by the parameterized model of

the eclipse are better determined than those of the derivative technique. However,

the former method does have some disadvantages. Ideally, it requires observations

of most of the orbital cycle, as the orbital hump is needed to fit some parameters

reliably, particularly the bright spot orientation θB, the isotropic flux fraction fiso

of the bright spot and the bright spot flux. Longer time-scale flickering can also

cause some problems if only a few cycles are available. As with any such technique,

the key weakness of the parameterized model method is the need for an accurate

model. However, as figure 5.11 shows, apart from the i ′ band of DV UMa, the

residual from the fit shows no large peaks in areas such as the ingress and egress of

the white dwarf or bright spot. Such peaks would be expected if the model were

not adequately fitting the data.

I note that that the system parameters derived for DV UMa (table 5.7) are consistent

with the superhump period-mass ratio relation of Patterson (1998, his equation

8). XZ Eri, however, lies 5σ off this relation. Here I have used the superhump

periods Psh = 0.062808 ± 0.000017 days for XZ Eri (Uemura et al., 2004) and

Psh = 0.08870 ± 0.00008 days for DV UMa (Patterson, 1998).

5.4 Eclipse mapping

The eclipse mapping results for XZ Eri are shown in figure 5.12. The main features

of the reconstructed disc are as follows. The white dwarf and bright spot are evident,

with the white dwarf peak flux much greater than that of the bright spot in all three
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Table 5.7: System parameters of XZ Eri and DV UMa derived using the Nauenberg mass–radius relation corrected to the appro-
priate T1. R2 is the volume radius of the secondary’s Roche lobe (Eggleton, 1983), and Rmin is as defined by Verbunt & Rappaport
(1988, their equation 13). The weighted means of the appropriate values from tables 5.5 and 5.6 are used for the model parameters.
One column of parameters is calculated using the derivative method, the other derived using the parameterized model technique.

XZ Eri DV UMa
Parameter Derivative Model Derivative Model

Inclination i 80.3◦ ± 0.6◦ 80.16◦ ± 0.09◦ 84.4◦ ± 0.8◦ 84.24◦ ± 0.07◦

Mass ratio q = M2/M1 0.117 ± 0.015 0.1098 ± 0.0017 0.148 ± 0.013 0.1506 ± 0.0009
White dwarf mass M1/M⊙ 1.01 ± 0.09 0.767 ± 0.018 1.14 ± 0.12 1.041 ± 0.024
Secondary mass M2/M⊙ 0.119 ± 0.019 0.0842 ± 0.0024 0.169 ± 0.023 0.157 ± 0.004
White dwarf radius R1/R⊙ 0.0082 ± 0.0014 0.0112 ± 0.0003 0.0067 ± 0.0018 0.0079 ± 0.0004
Secondary radius R2/R⊙ 0.147 ± 0.015 0.1315 ± 0.0019 0.207 ± 0.016 0.2022 ± 0.0018
Separation a/R⊙ 0.680 ± 0.021 0.619 ± 0.005 0.90 ± 0.03 0.869 ± 0.007
White dwarf radial velocity K1/km s−1 58 ± 8 49.9 ± 0.9 68 ± 6 66.7 ± 0.7
Secondary radial velocity K2/km s−1 496.9 ± 2.0 454.7 ± 0.4 457.5 ± 2.6 443.2 ± 0.5
Outer disc radius Rd/a 0.300 ± 0.017 0.3009 ± 0.0025 0.322 ± 0.011 0.31805 ± 0.00012
Minimum circularisation radius Rmin/a 0.217 ± 0.013 0.2229 ± 0.0014 0.196 ± 0.008 0.1948 ± 0.0005
White dwarf temperature T1/K 15 000 ± 500 17 000 ± 500 20 000 ± 1500 20 000 ± 1500
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passbands. The disc itself is effectively invisible (the numerous small-scale features

are most likely spurious remnants of the arcs discussed in § 3.7). The intensity

distribution along the disc rim (of radius 0.3a; see tables 5.4, 5.5 and 5.6) shows

a peak at the location of the bright spot, with smaller features probably due to

flickering in the light curve. The bright spot is clearly visible in the g ′ and r ′ band

reconstructions, but is severely distorted in the u ′ map. This is due to the relative

faintness of the bright spot coupled with the increased noise in the latter filter.

The temperature map of the disc of XZ Eri shown in figure 5.13 was produced by

fitting a blackbody function convolved through the filter response functions to each

point in the relevant reconstructed maps. The orbital separation and distance to

the system adopted were those derived in § 5.3.2.

The eclipse mapping results for DV UMa are shown in figures 5.14. The main

features of the reconstructed disc are as follows. The white dwarf and bright spot

are evident, with the white dwarf being significantly the brighter of the two. The

disc itself is effectively invisible (the numerous small-scale features are most likely

spurious remnants of the arcs discussed in § 3.7). The intensity distribution along

the disc rim (of radius 0.31805a; see tables 5.4, 5.5 and 5.6) shows a peak at the

location of the bright spot, with smaller features probably due to flickering in the

light curve.

The temperature map of the disc of DV UMa shown in figure 5.15 was produced by

fitting a blackbody function convolved through the filter response functions to each

point in the relevant reconstructed maps. The orbital separation and distance to

the system adopted were those derived in § 5.3.2.
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Figure 5.12: As figure 4.7, but for, from top, the u ′, g ′ and r ′ data of XZ Eri. The
system parameters adopted for the reconstruction are q = 0.1098, i = 80.16◦ and
Rd = 0.3a
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Figure 5.13: 3-dimensional plot of a blackbody fit to the reconstructed disc intensi-
ties of XZ Eri shown in figure 5.12.
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Figure 5.14: As figure 5.12, but for, from top, the u ′, g ′ and i ′ data of DV UMa.
The system parameters adopted for the reconstruction are q = 0.1506, i = 84.24◦

and Rd = 0.31805a
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Figure 5.15: 3-dimensional plot of a blackbody fit to the reconstructed disc intensi-
ties of DV UMa shown in figure 5.14.



Chapter 6

GY Cnc, IR Com and HT Cas

The contents of this chapter have been accepted for publication in the Monthly No-

tices of the Royal Astronomical Society as ULTRACAM photometry of the eclipsing

cataclysmic variables GY Cnc, IR Com and HT Cas by Feline, Dhillon, Marsh,

Watson, & Littlefair (2005). The exceptions to this are the eclipse mapping results

for GY Cnc and IR Com presented at the end of this chapter in § 6.4.2. The reduc-

tion and analysis of the data are all my own, as is the text below. Dr. Vik Dhillon

supervised all work presented here.

GY Cnc (= RX J0909.8+1849 = HS 0907+1902) is a V ∼ 16 mag eclipsing dwarf

nova with an orbital period Porb = 4.2 hr. GY Cnc was detected in both the Ham-

burg Schmidt objective prism survey (Hagen et al., 1995) and the ROSAT Bright

Source catalogue (Voges et al., 1999), and identified as a possible CV by Bade et al.

(1998). Spectroscopic and photometric follow-up observations by Gänsicke et al.

(2000) confirmed the status of GY Cnc as an eclipsing dwarf nova by detecting it

in both outburst and quiescence. Shafter et al. (2000) used multi-colour photo-

metric observations of GY Cnc to determine the temperatures of the white dwarf,

bright spot and accretion disc and the disc power-law temperature exponent, which

167
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they found to be largely independent of the mass ratio assumed. Spectroscopic and

photometric observations obtained by Thorstensen (2000) constrain the mass ratio

q = 0.41 ± 0.04 and the orbital inclination i = 77.0◦ ± 0.9◦ (after applying cor-

rections to the radial velocity of the secondary star K2). The spectral type of the

secondary star has been estimated as M3± 1.5 (Gänsicke et al., 2000; Thorstensen,

2000). GY Cnc was observed during decline from outburst in 2001 November by

Kato et al. (2002b), who suggest that GY Cnc is an “above-the-gap counterpart”

to the dwarf nova HT Cas.

IR Com (= S 10932 Com) was discovered as the optical counterpart to the ROSAT

X-ray source RX J1239.5 (Richter & Greiner, 1995). IR Com exhibits high (pho-

tographic magnitude mph = 16.5 mag) and low (mph = 18.5 mag) brightness

states (Richter & Greiner, 1995; Richter et al., 1997), with outburst amplitudes

of mph ∼ 4.5 mag (Richter et al., 1997; Kato et al., 2002a). Wenzel et al. (1995)

detected eclipses in the light curve of IR Com and determined an orbital period of

2.1 hr, just below the period gap. Richter et al. (1997) present photometric and

spectroscopic observations of IR Com, which illustrate the highly variable nature of

the target. Kato et al. (2002a) reported observations of IR Com in, and during the

decline from, outburst. None of the published light curves of IR Com show much

evidence for the presence of an orbital hump before eclipse, or for asymmetry of

the eclipse itself (although the limited time-resolution of the observations may mask

such asymmetries to an extent). Kato et al. (2002a) again suggest that IR Com is

a twin of HT Cas.

HT Cas is a well-known and well-studied eclipsing dwarf nova. It has a quiescent

magnitude of V ∼ 16.4 mag and an orbital period of 1.77 hr. The literature on

HT Cas is extensive; here I only discuss a selection of relevant work. The system

parameters of HT Cas have been well-determined by Horne et al. (1991) using simul-

taneous U, B, V and R observations in conjunction with those of Patterson (1981):
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q = 0.15 ± 0.03 and i = 81.0◦ ± 1.0◦. In a companion paper, Wood et al. (1992)

determined the temperature of the white dwarf (T = 14 000±1000 K) and estimated

the distance to the system (D = 125±8 pc). They also eclipse-mapped the accretion

disc, illustrating the flat radial temperature profile typical of quiescent dwarf novæ.

Vrielmann et al. (2002) have recently reconstructed the temperatures and surface

densities of the quiescent accretion disc of HT Cas using physical parameter eclipse

mapping. This method also yields an estimate of the distance, D = 207 ± 10 pc.

Marsh (1990) detected the secondary star in HT Cas using low-resolution spectra,

estimating the spectral type as M5.4 ± 0.3. Marsh (1990) found the secondary

star to be consistent with main-sequence values for the mass, radius and luminos-

ity. Robertson & Honeycutt (1996) discuss the long-term quiescent light curve of

HT Cas, with particular regard to the (unusual) presence of high- and low-states

(at 16.4 and 17.7 mag, respectively). Wood et al. (1995) detected an X-ray eclipse

of HT Cas using ROSAT observations during one of the system’s low-luminosity

states. The X-rays are believed to originate in a boundary layer between the white

dwarf and inner accretion disc.

In this chapter, I present light curves of GY Cnc, IR Com and HT Cas, obtained

with ultracam. The data for GY Cnc and IR Com are of the highest time-

resolution yet obtained, and are the first simultaneous, three-colour light curves for

these objects. I present eclipse maps of HT Cas in quiescence in 2002 and 2003,

which show distinct changes in the structure of the accretion disc which are related

to the overall brightness of the system.

The observations of GY Cnc, IR Com and HT Cas are summarised in table 2.1,

and the data reduction procedure is detailed in § 2.3. The light curves of GY Cnc,

IR Com and HT Cas are shown in figure 6.1. A technical problem with the i′ band

CCD destroyed the data in this band on 2002 September 14 (HT Cas). Note also

that the timing data of 2003 October 29 (HT Cas) were corrupted. The relative
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Figure 6.1: Left. The light curves of GY Cnc. Centre. The light curves of IR Com.
Right. The light curves of HT Cas. The i ′ and z ′ data are offset vertically upwards
and the u ′ data are offset vertically downwards by the amount specified in the
relevant plot. Note that the i ′ HT Cas data of 2002 September 14 were lost due to
a technical problem with this CCD. The mean light curve of IR Com is also shown.
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timings remained precise, however, enabling the accurate phasing of the data (see

§ 6.1).

6.1 Orbital ephemerides

The times of mid-eclipse Tmid given in table 6.1 were determined as decribed in § 3.2,

taking the midpoint of the white dwarf eclipse as the point of mid-eclipse. If the

sharp eclipse is caused by the obscuration of the bright spot rather than the white

dwarf, then phase zero, as defined by the ephemerides below, may not necessarily

correspond to the conjunction of the white and red dwarf components. As discussed

in § 6.2–6.4, however, it is probable that the sharp eclipse in all three objects (and

certainly HT Cas) is of the white dwarf.

The orbital ephemeris of GY Cnc was determined using the seven eclipse timings of

Gänsicke et al. (2000), the eight timings of Shafter et al. (2000), the seven timings of

Kato et al. (2000), the two timings of Vanmunster (2000), the four timings of Kato

et al. (2002b) and the six ultracam timings determined in this chapter and given

in table 6.1. Errors adopted were ±1 × 10−4 days for the data of Gänsicke et al.

(2000) and Shafter et al. (2000), ±5 × 10−5 days for the data of Kato et al. (2000),

Vanmunster (2000) and Kato et al. (2002b) and ±1× 10−5 days for the ultracam

data. A linear least squares fit to these times gives the following orbital ephemeris

for GY Cnc:

HJD = 2451581.826653 + 0.1754424988 E.

14 ± 21

To determine the orbital ephemeris of IR Com, I used the 24 timings of Richter

et al. (1997, as listed in Kato et al., 2002a), the 14 eclipse timings of Kato et al.
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Table 6.1: Mid-eclipse timings of GY Cnc, IR Com and HT Cas. The cycle numbers
were determined from the ephemerides described in § 6.1. Note that a technical
problem with the i ′ CCD corrupted the data during eclipse in this band on 2002
September 14. The timings are accurate to ±1×10−5 days (GY Cnc), ±2×10−5 days
(IR Com) and ±5 × 10−6 days (HT Cas).

Target UT date at Cycle HJD + 2 452 530
start of night u′ g′ i′ z′

GY Cnc 2003 5 19 6826 249.397235 249.397223 – 249.397248
GY Cnc 2003 5 23 6849 253.432215 253.432254 253.432254 –
IR Com 2003 5 21 37857 251.503269 251.503250 251.503194 –
IR Com 2003 5 23 37880 253.505096 253.505153 253.505153 –
IR Com 2003 5 25 37902 255.419890 255.419966 255.419909 –
HT Cas 2002 9 13 119537 1.503015 1.503035 1.502995 –
HT Cas 2002 9 14 119550 2.460443 2.460477 – –
HT Cas 2003 10 30 125129 413.338089 413.338159 413.338199 –
HT Cas 2003 10 30 125130 413.411832 413.411792 413.411769 –

(2002a) and those nine, given in table 6.1, determined from the ultracam data.

The errors adopted for the data of Richter et al. (1997) and Kato et al. (2002a)

were ±1 × 10−3 days for cycles −134516, −51035, −42189, −29597 and −21531

and ±5 × 10−5 days for subsequent cycles, except where stated otherwise by Kato

et al. (2002a). Those adopted for the ultracam timings were ±2 × 10−5 days.

The orbital ephemeris of IR Com was determined by a linear least squares fit to the

above timings, and is

HJD = 2449486.4818691 + 0.08703862787 E.

26 ± 20

To determine the orbital ephemeris of HT Cas I used the 11 mid-eclipse times of

Patterson (1981), the 23 times of Zhang et al. (1986), the 15 times of Horne et al.

(1991) and the 11 ultracam times given in table 6.1. The times of Patterson (1981),

Zhang et al. (1986) and Horne et al. (1991) were assigned errors of ±5 × 10−5 days
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and the times in table 6.1 assigned errors of ±5× 10−6 days. A linear least squares

fit to these times gives the following orbital ephemeris for HT Cas:

HJD = 2443727.937290 + 0.07364720309 E.

8 ± 7

The loss of accurate timings for the 2003 October 29 HT Cas data meant that

these data were phased according to the orbital period derived above, but with a

different zero-point. The zero-point used instead was the mid-point of the observed

eclipse. Note that the relative timings for this data remained accurate; the times

were merely out by a constant, unknown, offset. The cycle number was accurately

determined from the times in the hand-written observing log. This may result in

a slight fixed time offset for these data due to the uncertainty in determining the

point of mid-eclipse.

These ephemerides were used to phase all of the data.

The O − C diagrams for GY Cnc, IR Com and HT Cas produced using the above

ephemerides and times of mid-eclipse are shown in figures 6.2, 6.3 and 6.4, respec-

tively. None shows any convincing evidence for period change.1

6.2 GY Cnc

In keeping with previous observations (summarised in the introduction to this chap-

ter), the light curve of GY Cnc shown in figure 6.1 shows a deep primary eclipse,

with the g ′ flux dropping from a peak value of approximately 3 mJy (15.2 mag) to

1Note that the data point at the lower left of figure 6.3 was observed with very poor time-
resolution of 1800 sec, greater than the O − C residual, and therefore does not (alone; the other
points are consistent with the derived period) constitute significant evidence for period change.
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Figure 6.2: The O − C diagram of GY Cnc produced using a linear ephemeris as
described in the text.

Figure 6.3: The O − C diagram of IR Com produced using a linear ephemeris as
described in the text.
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Figure 6.4: The O − C diagram of HT Cas produced using a linear ephemeris as
described in the text.

about 0.6 mJy (17.0 mag) at mid-eclipse. This places the system slightly above its

quiescent brightness of V = 16 mag, shortly after an outburst which reached twelfth-

magnitude on 2003 May 13 (Waagen, private communication; observed by the am-

ateur organisation the American Association of Variable Star Observers, AAVSO).

The system was therefore likely to still be in decline from outburst. The eclipse mor-

phology appears to be that of a gradual disc eclipse with a sharp eclipse of the white

dwarf or bright spot superimposed thereon. The sharp eclipse is most probably that

of a white dwarf, not the bright spot, as in both cycles the ingress and egress are of

the same order in terms of both duration and depth. The eclipse is flat-bottomed,

suggesting that the disc and white dwarf are completely obscured at these phases.

The eclipse of the disc appears to be asymmetric, with the ingress being rather

sharper than the more gradual egress. This is indicative of asymmetry in the disc

structure, possibly due to an extended bright spot at the disc rim. The changing

foreshortening of the bright spot, the cause of the orbital hump often observed in

other dwarf novæ, would also account for the rather greater flux before eclipse than
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Table 6.2: White dwarf contact phases of IR Com, as defined in the text, accurate
to ±0.00023.

Date Band φw1 φw2 φw3 φw4 φwi φwe

2003 5 21 u ′ –0.031748 –0.020917 0.022841 0.028474 –0.025249 0.024575
g ′ –0.026983 –0.021351 0.021108 0.027174 –0.023517 0.025440
i ′ –0.030015 –0.018318 0.019808 0.028907 –0.025249 0.024575

2003 5 23 u ′ –0.027904 –0.021404 0.021487 0.026686 –0.026170 0.025388
g ′ –0.026603 –0.021837 0.021487 0.026253 –0.024003 0.025388
i ′ –0.028770 –0.020971 0.023221 0.025820 –0.021837 0.025388

2003 5 25 u ′ –0.027680 –0.020744 0.020848 0.027346 –0.026376 0.024311
g ′ –0.026376 –0.021610 0.022579 0.026913 –0.024645 0.025176
i ′ –0.029844 –0.016411 0.020415 0.026047 –0.022914 0.022579

Mean u ′ –0.027811 –0.022901 0.022448 0.027358 –0.025788 0.025046
light g ′ –0.026077 –0.021744 0.021292 0.027069 –0.023478 0.024758
curve i ′ –0.028965 –0.019722 0.021003 0.027358 –0.027231 0.025625

after. Indeed, the ingress observed on 2003 May 23 appears to show two steps,

which I attribute to first the bright spot and then the white dwarf entering eclipse.

The likely presence of an extended bright spot is another reason why I suspect that

the sharp, discrete eclipse visible in both nights’ data is that of the white dwarf.

The light curve of figure 6.1 is morphologically similar to quiescent light curves in

the literature (Gänsicke et al., 2000; Shafter et al., 2000; Thorstensen, 2000). These

data were not suitable to use for determining the system parameters via either the

derivative or lfit techniques. In the first case, the bright spot egress is contami-

nated by flickering and is too gradual to produce a clear peak in the derivative of

the light curve. In the second case, the presence of large-scale flickering prevented

the program from locating the ingress and egress points reliably.

6.3 IR Com

The light curve of IR Com, shown in figure 6.1, also exhibits a deep primary eclipse.

The light curve is highly variable outside of eclipse, with a maximum g ′ flux of
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about 1.6 mJy (15.9 mag) and a minimum during eclipse of approximately 0.16 mJy

(18.4 mag). The average out-of-eclipse g ′ flux level of IR Com during my obser-

vations was 1.0 mJy (16.4 mag), consistent with the system being in quiescence.

From the light curve of IR Com shown in figure 6.1 it is clear that the light curve of

this object is highly variable outside of eclipse. There is a clear eclipse of a compact

structure, either the white dwarf or bright spot, as evidenced by the sharpness of the

ingress and egress. The highly variable nature of the light curve of IR Com makes it

difficult to determine whether the sharp eclipse is of the white dwarf or bright spot.

The mean light curve of IR Com shown in figure 6.1 shows the main features of

the light curve much more clearly, as flickering is much reduced. The sharp eclipse

is revealed to be nearly symmetric, with evidence for an eclipse of the disc in the

V-shaped eclipse bottom and the slopes before and after the sharp eclipse. No sign

of the eclipse of another compact object is seen, so the sharp eclipse must be of the

white dwarf (in which case the bright spot is extremely faint) or an eclipse of the

bright spot (in which case the white dwarf remains visible at all phases).

Contact phases of the sharp eclipse of IR Com were determined using the derivative

of the light curve, as described in § 3.2. These timings, given in table 6.2, do

not show any evidence for asymmetry in the duration of ingress and egress (as is

frequently the case with the eclipse of a bright spot, where the ingress is of a longer

duration than the egress). Additionally, using the Nauenberg (1972) mass–radius

relation for a cold, rotating white dwarf with Kepler’s third law (as described in

§ 3.5) for reasonable values of q shows that the eclipse contact phases are entirely

consistent with the eclipsed object being of the correct size for a white dwarf. As

Kato et al. (2002a) point out, their mid-eclipse timings show no significant differences

between outburst and quiescence, implying that in both quiescence and outburst the

brightness distribution is centred on the white dwarf. These points lead me to believe

that the primary eclipse is of the white dwarf, rather than of the bright spot.
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Figure 6.5: The long-term light curve of HT Cas, courtesy of the AAVSO (Waagen,
private communication). Open circles are V band observations; arrows mark upper
limits on the magnitude of the system. The Julian date scale corresponds to calendar
dates from 2002 January 1 to 2004 January 1. Note the outburst in 2002 February,
which peaked on 2002 February 6 (= JD 2 452 312).

No unambiguous bright spot feature is visible in either the individual or mean light

curves of IR Com shown in figure 6.1. The absence of a bright spot eclipse pre-

vented the determination of the system parameters via either the derivative or lfit

techniques. From the absence of flickering during primary eclipse, it appears that

the flickering is confined to the inner regions of the accretion disc or the white dwarf

itself. The origin of the flickering in IR Com is most likely the boundary layer be-

tween the white dwarf and accretion disc (eclipse mapping of the flickering sources

in CVs is discussed in, for example, Bruch, 2000; Baptista & Bortoletto, 2004; Bap-

tista, 2004). The absence of a bright spot eclipse prevented the determination of

the system parameters via either the derivative or lfit techniques.
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Figure 6.6: As figure 5.12, but for, from top, the u ′, g ′ and i ′ 2002 September 13–14
light curves of HT Cas. The parameters adopted for these reconstructions were
those derived by Horne et al. (1991), q = 0.15 and i = 81.0◦. The disc radius was
estimated from the position of the reconstructed bright spot, and is Rd = 0.28a.
Prior to fitting, a (constant) offset was subtracted from the light curves. This offset
was 0.15, 0.09 and 0.32 mJy for the u′, g′ and i′ data, respectively. This offset was
0.15, 0.09 and 0.32 mJy for the u ′, g ′ and i ′ data, respectively. The sharp dip visible
at about phase −0.04 in the u ′ and g ′ light curves is due to a short gap between
observing runs on 2003 September 13 coinciding with a dip in the 2003 September
14 light curve.
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Figure 6.7: As figure 5.12, but for the u ′ (top), g ′ (middle) and i ′ (bottom) 2003
October 29–30 light curves of HT Cas. The radius of the disc (the same as that of
the disc rim) was estimated from the position of the bright spot in the eclipse maps,
and is 0.26a. The u′, g′ and i′ light curves were offset vertically by 0.24, 0.14 and
0.42 mJy, respectively.
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6.4 HT Cas

6.4.1 Light curve morphology

The light curves of HT Cas shown in figure 6.1 are typical of those found in the

literature (e.g. Patterson, 1981; Horne et al., 1991). The typical out-of-eclipse g ′

flux for the 2002 data is 0.7 mJy (16.8 mag), and the typical mid-eclipse g ′ flux

is 0.1 mJy (18.9 mag; see also figure 6.6). The peak g ′ flux in the 2002 dataset is

approximately 1.0 mJy (16.4 mag). HT Cas is slightly brighter in the 2003 data:

the typical out-of-eclipse g ′ flux is 1.2 mJy (16.2 mag), and the mid-eclipse g ′ flux

is again about 0.1 mJy (18.9 mag; see also figure 6.7). The 2003 data set is entirely

consistent with HT Cas being in its high (brighter) quiescent state (HT Cas exhibits

much variability in its quiescent magnitude; see Robertson & Honeycutt, 1996), but

the 2002 data appears to be somewhere between the high and low states described

therein. The data from 2002 show other clear differences from the data of 2003.

First, the eclipse bottoms in 2002 were much flatter than those of 2003, implying

that the brightness distribution in 2002 was more centrally concentrated than in

2003. Second, the eclipse depth in 2003 was greater than in 2002, which, as we

shall see, is due to increased disc emission and not an increase in the brightness

of the white dwarf. There is also visible in the 2002 data a clear shoulder during

egress. This appears to be the egress of the bright spot, similar in appearance to

the feature seen in the light curves of Patterson (1981). Unfortunately for the aim

of determining the system parameters from the eclipse contact phases, no bright

spot ingress is visible. This variability of the light curve is typical of HT Cas (e.g.

Patterson, 1981; Horne et al., 1991; Robertson & Honeycutt, 1996). The fact that

the flux increase between 2002 and 2003 is slight illustrates that these brightness and

morphological variations are not due to an overwhelming increase in the disc flux

‘drowning out’ the bright spot, as occurs during outburst. Observations of HT Cas
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by the AAVSO (Waagen, private communication; figure 6.5) show no evidence for

an outburst of HT Cas before the 2003 October observations—the change in the

light curve is not due to the system being on the way up or down from an outburst.

I term the 2003 and 2002 data the ‘high’ and ‘low’ quiescent states, respectively

(although I caution that these probably differ in both underlying cause and detailed

observational properties from the various high and low quiescent states discussed in

the literature).

6.4.2 Eclipse mapping

The accretion disc of HT Cas was mapped using the techniques described in detail

in § 3.7. The data of 2002 and 2003 were mapped independently, since subsequent

analysis showed there to be significant differences, discussed below, between the two

data epochs.

I have estimated the radius of the disc rim from the position of the reconstructed

bright spot, since the disc radius, of 0.28a in 2002 and 0.26a in 2003, is larger

than that derived by Horne et al. (1991) of 0.23a. I have chosen not to deconvolve

and remove the white dwarf from the light curves as the presence of flickering and

the lack of a clear distinction between the eclipses of the white dwarf, bright spot

and accretion disc make this difficult to do so reliably (see, for example, chapter 5).

Besides, clear evidence for the features reproduced in the eclipse maps and discussed

below can be seen directly in the light curves themselves.

As only a few light curves were used, the noise in the light curves is dominated by

flickering rather than by photon noise. Iterating to a reduced χ2 = 1 is therefore

inappropriate in this case and leads to the noise in the light curves (flickering) being

transposed to the eclipse maps. Consequently, the eclipse maps were computed
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by progressively relaxing the χ2 constraint until the noise in the eclipse maps was

satisfactorily ameliorated (as judged by visual inspection).

The reconstructed eclipse maps of HT Cas shown in figures 6.6 and 6.7 show distinct

morphological changes from 2002 to 2003. In both 2002 and 2003 the flux comes

primarily from the white dwarf, but in 2002 there is clear evidence for a faint bright

spot in the outer regions of the accretion disc. The 2003 eclipse maps show a

very weak bright spot in the u′ and i′ passbands only. The absence of a bright

spot in the 2003 g′ band may, however, be a contrast effect, as the white dwarf is

approximately twice as bright in g′ as in the other bands. Not only is the bright

spot much fainter/absent in the 2003 reconstructed maps, but there is evidence for

emission from the inner portions of the accretion disc. This is best illustrated by

the radial flux profiles shown in figure 6.8. Comparing the two radial profiles to

the light curves shown in figure 6.1 demonstrates that the increased emission from

the inner disc corresponds to a higher overall brightness state. The greater flux in

2003 is not, upon inspection of the eclipse maps, due to increased emission from the

white dwarf, which is actually fainter in 2003 than in 2002, but due to a brighter

inner disc.

By summing the flux from each element of each eclipse map whose centre lies

within 0.03a of the centre of the white dwarf and fitting the resulting colours to

the hydrogen-rich, log g = 8 white dwarf model atmospheres of Bergeron et al.

(1995), converted to the SDSS system using the observed transformations of Smith

et al. (2002), the temperature of the white dwarf was determined to be T1 =

15 000±1000 K in 2002 and T1 = 14 000±1000 K in 2003. Varying the distance from

the white dwarf over which the summation took place between 0.01a–0.07a did not

significantly affect the colours and therefore did not significantly affect these tem-

perature estimates. These temperatures are consistent with those found by Wood

et al. (1992, T1 = 14 000 ± 1000 K) and by Vrielmann et al. (2002, T1 = 15 500 K)



184 CHAPTER 6. GY CNC, IR COM & HT CAS

from the same set of quiescent photometric observations. The effect of the variable

nature of the accretion disc of HT Cas is evident in the white dwarf temperatures of

HT Cas derived by Wood et al. (1995), of T1 = 13 200 ± 1200 K during a low state

(which is consistent with these results) and T1 = 18 700 ± 1800 K during a normal

state (which differs from these results by ∼ 2σ).

In figure 6.9 I present the colour-colour diagrams for the 2002 and 2003 eclipse maps

of HT Cas. In both 2002 and 2003 the scatter of the data points from the central

regions of the disc (R/a < 0.03), comprising the white dwarf and boundary layer,

is consistent with an increase in the g′ flux over that expected from a lone white

dwarf shifting the position of the data point down and to the left on figure 6.9. This

suggests a contribution to this flux from the boundary layer surrounding the white

dwarf. This excess g′ flux is (marginally) more pronounced in 2003 than in 2002,

as might be expected given the differences between the distribution of the disc flux

for these dates. The emission from both the inner (0.03 ≤ R/a < 0.18) and outer

(R/a ≥ 0.18) regions of the disc are concentrated to the right of the blackbody

relation in figure 6.9, possibly due to Balmer emission in the u′ band, suggesting

that the disc is optically thin (e.g. Horne & Cook, 1985; Wood et al., 1992; Baptista

et al., 1996). There seems to be no significant difference between the colours of the

inner and outer discs of 2002 (in 2003 the outer disc was too faint to be plotted

on figure 6.9). Interestingly, in both 2002 and 2003, the offset colours (the colours

of the flux subtracted from the light curves prior to fitting) lie on the blackbody

relation rather than being on the main-sequence curve. A blackbody fit to the 2002

and 2003 offset colours gave T ∼ 11 000 K and T ∼ 11 200 K, respectively.

GY Cnc was eclipse mapped using the system parameters of q = 0.421 and i = 77.4◦.

These were calculated from the secondary mass-orbital period relation of Smith &

Dhillon (1998), given in equation 1.36, assuming a primary mass of M1/M⊙ = 1.0.

The orbital inclination was then determined from the eclipse phase width of ∆φ =
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Figure 6.8: The radial flux distribution of the reconstructed accretion disc of HT Cas
for the 2002 data (black dots and solid red line) and the 2003 data (green dots and
dotted red line). The dots represent the flux and radius of the individual grid
elements; the red lines represent the mean flux in concentric annuli. The u ′ and
g ′ flux distributions were determined using the data of 2002 September 13–14 and
2003 October 29–30, whereas the i ′ distributions were determined using the data of
2002 September 13 and 2003 October 29–30 (due to a loss of sensitivity in the i ′

chip on 2002 September 14.)
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Figure 6.9: Colour-colour diagrams of the accretion disc of HT Cas in (top) 2002 and
(bottom) 2003. The solid straight line is a blackbody relationship, the solid curve
is the main-sequence relationship of Girardi et al. (2004) and the dashed curve is
the white dwarf model atmosphere relation of Bergeron et al. (1995) described in
section 3.6. The filled circles superimposed upon each of these lines indicate tem-
peratures of 20 000, 15 000, 10 000, 7000 and 5000 K, with the hotter temperatures
located at the upper left of the plots (the 5000 K point for the main-sequence curve
lies off the plot). Each of the other points represents one element of the eclipse
map. Elements at different radial distances R from the centre of the white dwarf
are plotted using different markers, as indicated in the figure. The position of the
mid-eclipse (offset) flux is also plotted. In the interests of clarity, only points where
the flux in all three passbands was greater than 5 × 10−4 mJy were plotted.
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0.06364±0.00008 determined from the eclipse timings. For the purposes of modelling

the orbital hump using the disc rim, the radius of the accretion disc was assumed

to be Rd = 0.3a. This value was, arbitrarily, chosen on the basis that it is similar

to those of the other dwarf novæ discussed in this thesis, OU Vir, XZ Eri, DV UMa

and HT Cas.

As the light curves of IR Com are highly variable, IR Com was eclipse mapped

using the mean light curve. The system parameters adopted were q = 0.153 and

i = 81.1◦. These were again calculated from the secondary mass-orbital period

relation of Smith & Dhillon (1998), assuming a primary mass of M1/M⊙ = 1.0.

The orbital inclination was then determined from the eclipse phase width of ∆φ =

0.0506 ± 0.0003 determined from the eclipse timings. The radius of the accretion

disc was assumed to be Rd = 0.3a.

The resulting eclipse maps of GY Cnc and IR Com are shown in figures 6.10 and

6.11, respectively. They show that in both systems the white dwarf dominates the

emission from the system, with the accretion disc virtually invisible.

6.4.3 Temperature maps

The temperature maps of HT Cas shown in figures 6.12 and 6.13 were produced

by fitting a blackbody function convolved through the filter response functions to

each point in the relevant reconstructed maps. The orbital separation adopted was

that derived by Horne et al. (1991), a/R⊙ = 0.670 ± 0.019, and the distance to

the system was that derived by Wood et al. (1992), D = 125 ± 8pc. Note that, as

figure 6.9 illustrates, the disc of HT Cas is not a good approximation to a blackbody

in many regions, so the temperature scale in figures 6.12 and 6.13 should be regarded

cautiously.
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Figure 6.10: As figure 5.12, but for, from top, the u ′, g ′, i ′ and z ′ light curves of
GY Cnc. The u ′ and g ′ light curves are of 2003 May 19 and 23 combined, whereas
the i ′ and z ′ light curves are of 2003 May 23 and 19, respectively. The system
parameters adopted for the reconstruction are q = 0.421, i = 77.4◦ and Rd = 0.3a
(see text for details).
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Figure 6.11: As figure 5.12, but for, from top, the u ′, g ′ and i ′ mean light curves
of IR Com. The system parameters adopted for the reconstruction are q = 0.153,
i = 81.1◦ and Rd = 0.3a (see text for details).
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Figure 6.12: 3-dimensional plot of a blackbody fit to the reconstructed 2002 disc
intensities of HT Cas shown in figure 6.6.

It was not possible to produce meaningful temperature maps of the accretion discs

of GY Cnc and IR Com because both the orbital separations and the distances to

the systems are currently unknown.
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Figure 6.13: 3-dimensional plot of a blackbody fit to the reconstructed 2003 disc
intensities of HT Cas shown in figure 6.7.
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Chapter 7

Discussion, conclusions and future

work

7.1 Discussion and conclusions

7.1.1 OU Vir

I have presented an analysis of 5 eclipses of OU Vir. These eclipses have been used

to make the first determination of the system parameters, given in table 4.5. My

main conclusions are as follows:

1. Eclipses of both the white dwarf and bright spot were observed during quies-

cence. The identification of the bright spot ingress and egress appears unam-

biguous.

2. By requiring the gas stream to pass directly through the light centre of the

bright spot the mass ratio and orbital inclination were found to be q = 0.175±

0.025 and i = 79.2◦ ± 0.7◦.

193
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3. Assuming that the central eclipsed object is circular, that its size accurately

reflects that of the white dwarf and that it obeys the Nauenberg (1972) approx-

imation to the Hamada & Salpeter (1961) mass-radius relationship, adjusted to

T = 21 700 K, I find that the white dwarf radius is R1 = 0.0097±0.0031 R⊙ and

its mass is M1 = 0.90±0.19 M⊙. This is in good agreement with the mean mass

of CV white dwarfs found by Smith & Dhillon (1998) of M̄1 = 0.69±0.13 M⊙.

4. With the same assumptions, I find that the volume radius of the secondary

star is R2 = 0.181± 0.024 R⊙ and that its mass is M2 = 0.16± 0.04 M⊙. The

secondary star is therefore consistent with the empirical mass-radius relation

for the main-sequence secondary stars in CVs of Smith & Dhillon (1998).

5. A blackbody fit to the white dwarf flux gives a temperature T1 = 21 700 ±

1200 K and a distance D = 650±210 pc with the same assumptions as above.

These are purely formal errors from the least-squares fit using estimated errors

of ±0.01 mJy for each flux measurement. Given that I use data from only one

eclipse, with a single measurement of the flux from each passband, the actual

uncertainties are likely to be significantly larger.

6. The accretion disc radius of Rd/a = 0.2315 ± 0.0150 is similar in size to

that of HT Cas, for which Horne et al. (1991) derived Rd/a = 0.23 ± 0.03.

This is an unusually small disc radius compared to many other dwarf novæ

(e.g. Z Cha, which has Rd/a = 0.334; Wood et al., 1989a), but larger than

the circularisation radius (Verbunt & Rappaport, 1988, their equation 13)

of Rcirc = 0.1820a. This small disc radius is especially surprising as it was

determined from observations obtained only 20 days after the superoutburst

was first reported (Kato, 2003).

7. The superhump period of OU Vir is Psh = 0.078 ± 0.002 days (Vanmunster

et al., 2000), which means OU Vir lies 5σ off the superhump period excess-
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mass ratio relation of Patterson (1998, his equation 8), with the superhump

period excess ǫ = (Psh − Porb)/Porb ∼ 0.073. However, it does not lie on

the superhump period excess-orbital period relation either, perhaps indicating

that the current estimate of the superhump period Psh is inaccurate.

8. The eclipse maps of OU Vir shown in figures 4.7–4.10 show the white dwarf

and bright spot to be the main sources of luminosity in the system, and no

evidence for the presence of accretion disc emission. They also illustrate the

difficulties present in eclipse mapping discrete sources of emission using the

maximum entropy technique, especially when combined with the presence of

flickering in a single cycle.

7.1.2 XZ Eri and DV UMa

I have presented an analysis of two quiescent eclipses of XZ Eri and three quiescent

eclipses of DV UMa. These eclipses have been used to determine the system param-

eters, given in table 5.7, via two independent methods. The first of these is through

analysis of the light curve derivative (Wood et al., 1985, 1986) and the second by

fitting a parameterized model of the eclipse (Horne et al., 1994). This is the first

determination of the system parameters of XZ Eri. My main conclusions follow:

1. For both objects, separate eclipses of the white dwarf and bright spot were ob-

served. The identification of the bright spot ingress and egress is unambiguous

in each case. The eclipse maps of XZ Eri and DV UMa shown in figures 5.12–

5.15 show the white dwarf and bright spot to be the main sources of luminosity

in these systems, and there is no evidence for the presence of accretion disc

emission. Compared to the eclipse maps of OU Vir (figures 4.7–4.10), they

also demonstrate the advantages of reducing flickering by phase-folding mul-

tiple (similar) cycles.
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2. By requiring the gas stream to pass directly through the light centre of the

bright spot the mass ratio and orbital inclination were found to be q =

0.117 ± 0.015 and i = 80.3◦ ± 0.6◦ for XZ Eri and q = 0.148 ± 0.013 and

i = 84.4◦ ± 0.8◦ for DV UMa. The parameterized model of the eclipse yielded

q = 0.1098± 0.0017 and i = 80.16◦± 0.09◦ for XZ Eri and q = 0.1506± 0.0009

and i = 84.24◦ ± 0.07◦ for DV UMa. The two techniques therefore produce

results that are in good agreement with each other. The system parameters

of DV UMa have also been estimated by Patterson et al. (2000) using eclipse

deconvolution. My analysis is consistent with their findings. The mass ratio

I derive for XZ Eri, q = 0.1098 ± 0.0017, is consistent with XZ Eri being

an SU UMa star (Whitehurst, 1988; Whitehurst & King, 1991), as indicated

by its (super)outburst history (Woudt & Warner, 2001; Uemura et al., 2004).

DV UMa is already confirmed as an SU UMa star after the observation of

superhumps in its outburst light curve by Nogami et al. (2001).

3. The empirical mass-radius and mass-period relations for the secondary stars

of CVs of Smith & Dhillon (1998) are in good agreement with the values

determined here. The results from the parameterized model of XZ Eri give a

very low secondary star mass of M2/M⊙ = 0.0842±0.0024. This is close to the

upper limit on the mass of a brown dwarf, which is 0.072 M⊙ for objects with

solar composition, but can be up to 0.086 M⊙ for objects with zero metallicity

(Basri, 2000). The only dwarf nova with an accurately determined secondary

star mass that is less than this is the well-studied system OY Car, which has

M2/M⊙ = 0.070 ± 0.002 (Wood et al., 1989a). I note also that the orbital

period and mass ratio of XZ Eri are similar to those of OY Car (Wood et al.,

1989a). As Patterson et al. (2000) note, the spectral type of the secondary

star in DV UMa (M4.5; Mukai et al., 1990) implies M2/M⊙ = 0.12−0.18 for a

main-sequence star of solar metallicity (Chabrier & Baraffe, 1997; Henry et al.,
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1999), consistent with my results of 0.169 ± 0.023 M⊙ and 0.157 ± 0.009 M⊙

for the derivative and model techniques, respectively.

4. Mukai et al. (1990) derive the primary temperature and radius of DV UMa

from spectroscopic observations by assuming that the white dwarf emits a

blackbody spectrum. The temperature they derive, T1 = 22 000 ± 1500 K,

is consistent with my result of 20 000 ± 1500 K. The primary radius (R1 =

26 000 − 7700 km) Mukai et al. (1990) calculate is only marginally consistent

with my results for the derivative technique (R1 = 0.0067 ± 0.0018 R⊙) and

not consistent with the results of the parameterized model (R1 = 0.0079 ±

0.0004 R⊙). This is probably due to the limitation of assuming a blackbody

spectrum (Mukai et al., 1990). The white dwarf in DV UMa is unusually

massive. My assumption that we are observing a bare white dwarf and not

a boundary layer around the primary cannot explain this, as the white dwarf

mass derived would in this case be a lower limit (e.g. Feline et al., 2004b).

The mass of the white dwarf in XZ Eri is, however, consistent with the mean

mass of white dwarfs in dwarf novæ below the period gap derived by Smith &

Dhillon (1998).

5. The bright spot scale SB of XZ Eri is constant over all three colour bands.

In DV UMa, however, it increases in size as the colour becomes redder. The

latter result can be interpreted as follows: the material cools as it moves farther

from the impact region between the accretion disc and the gas stream. These

results imply that either the time-scale for cooling of the bright spot material is

greater for DV UMa than for XZ Eri or that the post-impact material spreads

more quickly into the surrounding disc of DV UMa than of XZ Eri. The time-

scale for cooling and/or migration of shock-heated material in the bright spot

is likely to be affected by factors such as the density and composition of the

disc material, the mass ratio of the system and the disc radius.
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6. Finally, I note that the system parameters I derive for DV UMa are consistent

with the superhump period-mass ratio relation of Patterson (1998, his equation

8). XZ Eri, however, lies 5σ off this relation. I use here the superhump

periods Psh = 0.062808 ± 0.000017 days for XZ Eri (Uemura et al., 2004) and

Psh = 0.08870 ± 0.00008 days for DV UMa (Patterson et al., 2000).

7.1.3 GY Cnc, IR Com and HT Cas

I have found that the dwarf novæ GY Cnc and IR Com both exhibit eclipses of the

white dwarf, and have a bright spot which is faint (GY Cnc) or undetected (IR Com).

I have determined updated ephemerides for both of these objects. IR Com, with

its short orbital period, significant flickering, high/low quiescent states (Richter &

Greiner, 1995; Richter et al., 1997) and lack of orbital hump or bright spot strongly

resembles HT Cas in terms of its photometric behaviour (see also Kato et al., 2002a).

The colours of the offset flux of HT Cas shown in figure 6.9, which is estimated from

the flux at mid-eclipse, suggest that it does not originate solely from the secondary

star. Marsh (1990) detected the secondary star in HT Cas, and found it to be

indistinguishable from a main-sequence star of spectral type M5.4± 0.25, which lies

off to the bottom right of the plot of figure 6.9 on the main-sequence relation. It

is unlikely that the mid-eclipse flux is from outer regions of the accretion disc at

the back of the disc which remain uneclipsed at phase zero, since examination of

the eclipse maps shown in figures 6.6 and 6.7 reveals that the emission from the

rest of the disc is restricted to either the bright spot (in 2002) or the inner disc (in

2003). Given this, my preferred explanation for the mid-eclipse colours of HT Cas

is that they are a combination of flux from the secondary star (which dominates

in the i′ band) and flux from a vertically extended, optically thin disc wind, whose

Balmer emission causes it to dominate in the u′ band. I note that the offset flux
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level seems to be correlated with the flux from the inner regions of the accretion

disc, which supports the hypothesis of a disc wind originating from the inner disc

region or boundary layer of HT Cas. I caution, however, that systematic errors may

affect the offset fluxes due to the technique used to determine them, and that this

conclusion is therefore tentative. (As the offset flux is a small fraction of the total

light, except in the i′ band, any systematic errors present in the offset fluxes will

not significantly affect the rest of these results.)

The eclipse maps of HT Cas shown in figures 6.6 and 6.7 and the radial flux profiles

shown in figure 6.8 clearly demonstrate that the accretion disc of HT Cas was in

two distinct states during the 2002 and 2003 observations. In the 2002 data the

disc provided a negligible contribution to the total light, except for the presence

of a bright spot in its outer regions. In 2003 the bright spot was much fainter,

but the inner disc was luminous, causing the overall system brightness to be ∼

0.6 mJy brighter than in 2002. The uneclipsed component was also slightly brighter

in 2003 than 2002 (probably due to variability of the secondary star; see captions

to figures 6.6 and 6.7), but was not the major cause of the differences in the flux. I

proceed to review previous observations and to discuss various possible explanations

for this behaviour.

The most likely reasons for the observed changes in the intensity distribution of the

quiescent accretion disc of HT Cas lie in variability of the secondary star (which

supplies the disc with material) or some property of the accretion disc itself. We

can exclude the white dwarf as the cause of the variability since the only plausible

way that this could affect the majority of the disc is via a magnetic field. HT Cas

is a confirmed dwarf nova, whose white dwarfs do not have magnetic fields strong

enough to significantly influence the motion of gas in the disc (e.g. Warner, 1995).

The most obvious mechanism for the accretion disc to produce the observed be-

haviour of HT Cas is via some relationship to the outburst cycle. Baptista & Catalán
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(2001) reported changes in the structure of the accretion disc of EX Dra (a dwarf

nova above the period gap) through its outburst cycle, specifically the presence of

a low-brightness state immediately after outburst during which the disc and bright

spot were exceptionally faint. In EX Dra, the low-brightness state is due to reduced

emission from all parts of the disc and white dwarf; the eclipse maps of HT Cas

presented in figures 6.6–6.8, however, demonstrate that the quiescent luminosity of

HT Cas is affected by which areas of the disc are luminous. Robertson & Honeycutt

(1996) find that both the transition between the quiescent high and low states and

the duration of the low state in HT Cas occur on time-scales of days to months

compared to the outburst cycle length of ∼ 400 days (Wenzel, 1987). Truss, Wynn,

& Wheatley (2004) proposed a (slowly cooling) hot inner region of the disc in order

to explain the constant quiescent brightness observed in (most) dwarf novæ, which is

contrary to the increase of 1–3 magnitudes predicted by most disc instability models

(see Lasota, 2001 for a review). This fails to account for the observed changes in

the outer accretion disc of HT Cas, but does provide a plausible explanation for

the variability of the inner regions of the disc. This model, however, necessitates an

outburst between the two sets of observations reported here, which amateur observa-

tions (figure 6.5) can neither confirm nor refute. I conclude that this latter scenario

is the only plausible way in which the changes in the accretion disc of HT Cas could

be related to its position in the outburst cycle.

The secondary star can also induce changes in the accretion disc. For example, vari-

ability of the rate of mass transfer from the secondary star is often (plausibly) cited

as a mechanism to explain the quiescent variability of dwarf novæ (and other CVs).

Baptista & Bortoletto (2004) observed the short-period dwarf nova V2051 Oph in

high and low quiescent states. Eclipse maps showed that the increased emission

in the high state was due to greater emission from the bright spot and gas stream

region, implying a higher mass transfer rate from the secondary star. Interestingly,
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this is the opposite to what I find for HT Cas.

Variability of the secondary star is in fact the mechanism usually proposed to ex-

plain the well-documented presence of high/low quiescence states in HT Cas (e.g.

Berriman et al., 1987, Wood, 1995; Robertson & Honeycutt, 1996). The most fre-

quently cited explanation is that suggested by Livio & Pringle (1994), of star spots

passing over the inner Lagrangian point temporarily lowering the mass transfer rate

from the secondary star. Another possible causal process is magnetic variability of

the secondary star. Ak et al. (2001) found cyclical variations in the quiescent magni-

tudes and outburst intervals of 22 CVs, which they attributed to solar-type magnetic

activity cycles of the secondary stars. This can result in an increased mass transfer

rate from the secondary star as well as the removal of angular momentum from the

outer regions of the disc, causing material to accumulate in the inner regions of the

disc rather than in the outer regions. The magnetic activity cycle of the secondary

stars derived by Ak et al. (2001) is, however, on the wrong time-scale (years) to ex-

plain the frequency of the high/low state transitions and durations (days/months)

observed by Robertson & Honeycutt (1996).

In summary, variations in the rate of mass transfer from the secondary star can

explain the variability of the bright spot, but fail to account for the changes in

the inner disc. These can be explained by a larger mass transfer rate through

the accretion disc (possibly due to a rise in the disc viscosity and/or the scenario

proposed by Truss et al., 2004) increasing the emission from the inner disc via viscous

dissipation.

I conclude that the variability of the quiescent accretion disc of HT Cas is caused

by variations both in the rate of mass transfer from the secondary star and through

the accretion disc. An increase in the viscosity of the accretion disc leading to an

increase in the rate of mass transfer through the disc cannot explain these results

alone. Such a viscosity increment would spread material both inwards and outwards,
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meaning that, although this scenario could explain the rise in the 2003 inner disc

flux, one would still expect to observe a bright spot at the intersection of the outer

disc and gas stream. In the 2002 observations then, the rate of mass transfer through

the disc was lower and the rate of mass transfer from the secondary star greater than

in 2003. It is clearly desirable to undertake long-term monitoring of HT Cas (or a

similar object, e.g. IR Com) with the aim of eclipse mapping the changes that occur

in the disc during quiescence and especially during a transition between the high and

low states in order to determine the triggers and physical mechanisms underlying

this behaviour.

7.2 Overview

The work contained in this thesis has increased the number of accurately known

CV masses by three. As of 1998, there were only 14 reliable mass determinations of

CV secondary stars (Smith & Dhillon, 1998). This work forms part of a long term

project at Sheffield that aims to increase this number (e.g. Smith & Dhillon, 1998;

Thoroughgood et al., 2001, 2004, 2005; Thoroughgood, 2005; Feline et al., 2004a,b,c).

Since the review of Smith & Dhillon (1998), there have been at least eleven accurate

mass determinations of CVs, to whit: OU Vir1 (Feline et al., 2004b,c); XZ Eri1 and

DV UMa1 (Feline et al., 2004a); U Sco2 (Thoroughgood et al., 2001); AC Cnc3 and

V363 Aur3 (Thoroughgood et al., 2004); V347 Pup3 (Thoroughgood et al., 2005);

WZ Sge1 (Skidmore et al., 2002); IY UMa1 (Steeghs et al., 2003); HS 0907+19022

(Thorstensen, 2000); EX Dra1 (Baptista et al., 2000); and U Gem2 (Long & Gilliland,

1999; Naylor et al., 2005). Figure 7.1 shows the results from the work contained in

this thesis for the secondary star masses and orbital periods of OU Vir, XZ Eri and

1Estimated using eclipse timings.
2Estimated using the radial velocities of the primary and secondary stars.
3Estimated using the radial and rotational (v2 sin i) velocities of the secondary star with the

eclipse phase width measured from photometry.
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Figure 7.1: The secondary star masses and orbital periods for OU Vir, XZ Eri and
DV UMa determined in this thesis, compared to the empirical mass-period relations
given in equation 1.35 and obtained by Smith & Dhillon (1998, equation 1.36).
The error bars on the orbital periods of OU Vir, XZ Eri and DV UMa and on the
secondary star masses of XZ Eri and DV UMa are of the order of the size of the
symbols used to plot the points, and so are not plotted.

DV UMa compared to the empirical mass-period relations given in equation 1.35

and obtained by Smith & Dhillon (1998, equation 1.36).

As discussed in § 1.6, accurate measurements of the masses of CVs are important

for many reasons.

The common envelope theory of stellar evolution (see § 1.4.3 and Iben & Livio,

1993), for example, requires reliable endpoint masses—those of CVs—in order to

test computational models. Kolb (1993) finds that 70 per cent of all CVs should

be systems that have evolved to contain brown dwarfs, whereas the models of Poli-

tano (2004) predict that ∼ 18 per cent of the zero-age CV population will contain

a brown dwarf secondary star. The models may differ in their predictions of the

exact fraction of systems with brown dwarf secondary stars, but they agree that the

number is significant. This figure is highly dependent on the efficiency of the com-
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mon envelope in removing the orbital energy of the pre-CV, the initial mass ratio

distribution of the CV population and the details of the disrupted magnetic braking

model. The detection of a brown dwarf secondary star would be a crucial step in

understanding the evolutionary processes that have formed the current CV popula-

tion. Unfortunately, searches for CVs with brown dwarf secondaries (e.g Mennickent

et al., 2004) have yet to find direct evidence for such systems, although several can-

didates exist for which there is “significant indirect evidence” for a brown dwarf

secondary star (Littlefair et al., 2003). The secondary stars in CVs are often faint

and undetectable spectroscopically (see Littlefair et al., 2003), rendering unlikely the

measurement of the radial velocity of the secondary star.4 One would expect systems

that have evolved to near the minimum period to have a low mass-transfer rate and

hence a faint accretion disc, allowing the bright spot and white dwarf eclipses to be

clearly observed. The results contained in this thesis (especially those for XZ Eri)

demonstrate that the photometric technique works well for systems near the period

minimum where we expect to find these objects. The photometric method of mass

determination described in this thesis is the only unambiguous method of detecting

a brown dwarf secondary star in a CV.

The disrupted magnetic braking model (discussed in § 1.4.7), the currently favoured

mechanism for the origin of the period gap, also needs accurate secondary star masses

for observational confirmation. In this model, the secondary stars in CVs change

from being out of thermal equilibrium and hence under-massive for their radii above

the period gap to thermally relaxed (i.e. in thermal equilibrium) below the period

gap. This should produce a ‘kink’ in the mass–radius plot for the secondary stars of

CVs (see figure 7.2 and Smith & Dhillon, 1998), which cannot currently be seen due

to two reasons: first, the scarcity of mass measurements, and second, the inaccuracy

4The detection of lithium would be very strong evidence of a brown dwarf secondary star, since
it is only expected to be present in the spectra of young stars or brown dwarfs, but this is again
unlikely due to the faintness of the secondary.
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Figure 7.2: The masses and radii of the secondary stars in CVs and LMXBs. The
filled circles are data for CVs; those which are ringed were excluded from the fit.
The open triangles are data for low mass X-ray binaries (LMXBs). The theoretical
models of Chabrier & Baraffe (1997, the dashed line) and the empirical relation
derived by Clemens et al. (1998, the thin solid line) are plotted. The thick solid line
shows the secular evolution of the mass and radius of the secondary star computed by
Kolb & Baraffe (1999, described in the figure as Kolb & Baraffe 1998). From Smith
& Dhillon (1998). The secondary star masses and radii determined in this thesis are,
for comparison: OU Vir, M2/M⊙ = 0.16±0.04 and R2/R⊙ = 0.177±0.024; XZ Eri,
M2/M⊙ = 0.0842 ± 0.0024 and R2/R⊙ = 0.1315 ± 0.0019; DV UMa, M2/M⊙ =
0.157 ± 0.004 and R2/R⊙ = 0.2022 ± 0.0018. All three lie within the scatter of the
points.

of many of these measurements. The three mass determinations contained within

this thesis are consistent with the secondary star mass-radius relation of Smith &

Dhillon (1998, see also figure 7.2).

7.3 Future work

More candidate systems for photometric mass determinations are constantly be-

ing discovered. The Sloan Digital Sky Survey (SDSS) has already uncovered many

excellent candidates (Szkody et al., 2002, 2003, 2004). The number of previously

unknown CVs discovered by the SDSS is expected to number about 400 systems,

most of which will be faint, low mass transfer rate systems, ideal for the above pur-
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poses. Candidate systems are also being uncovered by the Hamburg Quasar Survey

(Hagen et al., 1995; Araujo-Betancor et al., 2005). This thesis has demonstrated

that the photometric method is an essential tool for accurate mass determinations

of the many faint, short period, eclipsing dwarf novæ that will be uncovered by

surveys such as these.

An attractive future project with ultracam is the long-term monitoring of dwarf

novæ. Future plans for ultracam include mounting it on the 2-m class Aristarchos

and Isaac Newton (INT) telescopes in Greece and La Palma, respectively. The

combination of ultracam with either of these telescopes would be ideal for such

long-term monitoring. Observing time for such a long-term project would be difficult

to obtain on larger telescopes, and the above combinations of ultracam and either

Aristarchos or the INT would in any case be able to achieve sufficient signal-to-noise

and time resolution to map the accretion discs of bright CVs in detail. Of particular

interest are changes in the accretion disc through the outburst cycle (e.g. Baptista

& Catalán, 2001) and the physical mechanisms underlying the existence of high and

low quiescent states in several short-period dwarf novæ (see chapter 6 and Feline

et al., 2005). It might be hoped that detailed eclipse mapping through the outburst

cycle of a dwarf nova would reveal heating/cooling fronts running from the outer to

the inner regions of the accretion disc or vice versa (see Warner, 1995, and references

therein for a detailed discussion). Doppler tomography, a technique which produces

Doppler maps of the system, also holds promise in this regard. For example, Steeghs

(2004) observed WZ Sge through its 2001 outburst, producing movies of the evolving

accretion flow. The detection of such heating and cooling fronts would provide

an invaluable observational framework in which to hang improved theory of the

underlying physics of accretion discs.
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Paczyński, B. 1965, Acta Astron., 15, 89

—. 1971, ARA&A, 9, 183

—. 1977, ApJ, 216, 822

Pantazis, G. & Niarchos, P. G. 1998, A&A, 335, 199

Parkhurst, J. A. 1897, Pop. Astr., 5, 164

Patterson, J. 1981, ApJS, 45, 517

—. 1998, PASP, 110, 1132

Patterson, J., Vanmunster, T., Skillman, D. R., Jensen, L., Stull, J., Martin, B.,

Cook, L. M., Kemp, J., & Knigge, C. 2000, PASJ, 112, 1584

Payne-Gaposchkin, C. & Gaposchkin, S. 1938, in Variable Stars (Cambridge, Mass.:

Harv. Obs. Mono. No. 5)

Penny, A. J. & Dickens, R. J. 1986, MNRAS, 220, 845

Politano, M. 2004, ApJ, 604, 817

Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. 1986, Numerical

Recipes in Fortran (Cambridge: Cambridge University Press)

Pringle, J. E. 1985, in Interacting Binary Stars, ed. J. E. Pringle & R. A. Wade

(Cambridge: Cambridge University Press), 1

Pylyser, R. E. & Savonije, G. J. 1988a, A&A, 191, 57

—. 1988b, A&A, 208, 52

Rappaport, S., Verbunt, F., & Joss, P. C. 1983, ApJ, 275, 713



ULTRACAM PHOTOMETRY OF ECLIPSING CVS 215

Richter, G. A. & Greiner, J. 1995, in Proc. Abano-Padova Conf. on Cataclysmic

Variables, ed. A. Bianchini, M. Della Valle, & M. Orio, 205, 177

Richter, G. A., Kroll, P., Greiner, J., Wenzel, W., Luthardt, R., & Schwarz, R. 1997,

A&A, 325, 994

Ritter, H. & Kolb, U. 1998, A&AS, 129, 83

Robertson, J. W. & Honeycutt, R. K. 1996, AJ, 112, 2248

Robinson, E. L. 1973, ApJ, 180, 121

—. 1976, ApJ, 203, 485

Robinson, E. L., Barker, E. S., Cochran, A. L., Cochran, W. D., & Nather, R. E.

1981, ApJ, 251, 611

Russell, H. N. 1945, ApJ, 102, 1

Rutten, R. G. M. 1998, A&AS, 127, 581

Rutten, R. G. M., Dhillon, V. S., Horne, K., & Kuulkers, E. 1994, A&A, 283, 441

Rutten, R. G. M., Dhillon, V. S., Horne, K., Kuulkers, E., & van Paradijs, J. 1993,

Nat, 362, 518

Rutten, R. G. M., van Paradijs, J., & Tinbergen, J. 1992, A&A, 260, 213

Sawada, K., Matsuda, T., & Hachisu, I. 1986a, MNRAS, 219, 75

—. 1986b, MNRAS, 221, 679

Schneider, D. P. & Young, P. J. 1980, ApJ, 238, 946

Schoembs, R. & Hartmann, K. 1983, A&A, 128, 37

Schreiber, M. R., Hameury, J.-M., & Lasota, J.-P. 2003, MNRAS, 410, 239



216 BIBLIOGRAPHY

Shafter, A. W., Clark, L. L., Holland, J., & Williams, S. J. 2000, PASP, 112, 1467

Shahbaz, T., Naylor, T., & Charles, P. A. 1994, MNRAS, 268, 756

Shakura, N. I. & Sunyaev, R. A. 1973, A&A, 24, 337

Shapley, H. & Hughes, E. M. 1934, Ann. Harvard Coll. Obser., 90, 163

Sherrington, M. R., Jameson, R. F., Bailey, J., & Giles, A. B. 1982, MNRAS, 200,

861

Sion, E. M., Cheng, F. H., Szkody, P., Sparks, W., Gänsicke, B., Huang, M., &
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